
EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18 1 / 20

http://www.eecs.yorku.ca/course/2011M

Program Correctness and Loop Invariants

Loop Invariants

Ch. 4.4, page 181

Key idea in proving correctness of iterations

Useful in later Algorithms and Software Engg
courses

Not dealt with in detail in our text

Note: Some slides in this presentation have been
adapted from Prof Elder’s slides.

S. Datta (York Univ.) EECS 2011 W18 2 / 20

Program Correctness and Loop Invariants

Correctness Definition: Program/Method

Input/output specifications: E.g. for sorting:
INPUT: A[1..n] - an array of integers
OUTPUT: a permutation B of A such that
B[1] ≤ B[2] ≤ . . . ≤ B[n]

An input is valid if it satisfies the input specifications

CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input
To show that the algorithm works correctly for all
valid inputs of all sizes:

Exhaustive testing not feasible.
Analytical techniques are useful essential here.

S. Datta (York Univ.) EECS 2011 W18 3 / 20

Program Correctness and Loop Invariants

Correctness Definition: Code Segment

〈pre − condition〉 ∧ 〈code〉 ⇒ 〈post − condition〉

If the input meets the preconditions, then the
output must meet the post-conditions.

If the input does not meet the preconditions, then
nothing is required.

S. Datta (York Univ.) EECS 2011 W18 4 / 20

Program Correctness and Loop Invariants Assertions

Assertions

An assertion is a statement about the state of the
program at a specified point in its execution
May be implemented in code, as an error-check
Types:

Preconditions: Any assumptions that must be true about
the code that follows
Postconditions: The statement of what must be true
about the preceding code
Exit condition: The statement of what must be true to
exit a loop or a method or program
Loop invariants: Some property that holds in each
iteration of the loop, and is useful for proving correctness
of the loop

S. Datta (York Univ.) EECS 2011 W18 5 / 20

Program Correctness and Loop Invariants Assertions

Uses

If the assertions can be checked automatically,
correctness checking can be automated

Caveat: undecidability issues

EECS 3311 will teach you to do this in practice

S. Datta (York Univ.) EECS 2011 W18 6 / 20

Program Correctness and Loop Invariants Loop Invariants

Loop Invariants

Any property that holds during each iteration of a
loop

1 + 1 = 2, 1 6= 0 are valid loop invariants for any
loop!

We want to use loop invariants that help us to
prove correctness of loops

S. Datta (York Univ.) EECS 2011 W18 7 / 20

Program Correctness and Loop Invariants Loop Invariants

Loop Invariants Example: FindMax

Input: A[1..n] - an array of integers
Output: an element m of A such that A[j] ≤ m,
1 ≤ j ≤ n

FindMax(A)
1 n← length(A)
2 max ← A[1]
3 for j ← 2 to n
4 do if max < A[j]
5 then max ← A[j]
6 return max

Some loop invariants for the for-loop are......?
S. Datta (York Univ.) EECS 2011 W18 8 / 20

Program Correctness and Loop Invariants Loop Invariants

Correctness Proofs for Loops

Decompose the job into these parts

Pre-condition for the loop

Loop Invariant for each iteration

Termination condition

Termination implies post-condition

Note the similarities with induction.

S. Datta (York Univ.) EECS 2011 W18 9 / 20

Program Correctness and Loop Invariants Loop Invariants

Correctness of FindMax

Pre-condition for the loop: max contains A[1]

Loop Invariant for each iteration: At the beginning
of iteration j of the for loop, max contains the
maximum of A[1..j − 1]

Termination condition: j = length(A) + 1

Termination implies post-condition: max is the
correct maximum

S. Datta (York Univ.) EECS 2011 W18 10 / 20

Program Correctness and Loop Invariants Loop Invariants

Proof of the Loop Invariant - 1

Partial Correctness

Initialization: max contains A[1], so LI (1) is true

Maintenance: For j > 2, assume LI (j − 1); so before
iteration j − 1, max = maximum of A[1..j − 2]

Case 1: A[j − 1] = maximum of A[1..j − 1]. In
lines 3,4, max is set to A[j − 1]

Case 2: A[j − 1] is not the maximum of
A[1..j − 1], so the maximum of
A[1..j − 1] is in A[1..j − 2]. By our
assumption, max already has this value,
and max is unchanged in this iteration.

S. Datta (York Univ.) EECS 2011 W18 11 / 20

Program Correctness and Loop Invariants Loop Invariants

Proof of the Loop Invariant - Termination

Loop Invariant for each iteration: At the beginning of
iteration j of the for loop, max contains the maximum of
A[1..j − 1]

Termination: When the loop terminates,
j = length(A) + 1

Termination implies post-condition: max contains
the maximum of A[1..length(A)]
Therefore, it is the correct maximum

S. Datta (York Univ.) EECS 2011 W18 12 / 20

Program Correctness and Loop Invariants Loop Invariants

Loop Invariants - Summary

We must show three things about loop invariants:

Initialization – it is true prior to the first iteration

Maintenance – if it is true before an iteration, it
remains true before the next iteration

Termination – when loop terminates the invariant
gives a useful property to show the correctness of
the algorithm

Partial Correctness ∧ Termination ⇒ Correctness

S. Datta (York Univ.) EECS 2011 W18 13 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search

Preconditions: Given a key(25), a sorted list of keys

PostCondition: Find key in list (if there)

Define a loop invariant:
Maintain a sublist
If the key is contained in the original list, then the key is
contained in the sublist

S. Datta (York Univ.) EECS 2011 W18 14 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search: Loop Invariant

Cut sublist in half

Determine which half the key would be in

Keep that half

Caveat: Invariant must not assume that the element
is present in the list.
So it should say something like
“If the key is contained in the original list, then the
key is contained in the sublist.”

S. Datta (York Univ.) EECS 2011 W18 15 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search: Algorithm Design

It is faster not to check if the middle element = key

The size of the list gets smaller
If the sublist has even length, which element is mid?
Does not matter – choose right.

S. Datta (York Univ.) EECS 2011 W18 16 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search: Mistakes

If key ≤ mid , then key is in left half: [i ,mid − 1]
If key > mid , then key is in right half: [mid , j]

Possible fix?
If key < mid , then key is in left half: [i ,mid − 1]
If key ≥ mid , then key is in right half: [mid , j]

S. Datta (York Univ.) EECS 2011 W18 17 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search: Another Mistake

Possible fix: making the left half slightly bigger.

If key ≤ mid , then key is in left half: [i ,mid]
If key > mid , then key is in right half: [mid + 1, j]

S. Datta (York Univ.) EECS 2011 W18 18 / 20

Program Correctness and Loop Invariants Loop Invariants

Binary Search: pseudo-code

S. Datta (York Univ.) EECS 2011 W18 19 / 20

Program Correctness and Loop Invariants Loop Invariants

Another Example

S. Datta (York Univ.) EECS 2011 W18 20 / 20

	Program Correctness and Loop Invariants
	Assertions
	Loop Invariants

