EECS 2011 M: Fundamentals of Data Structures

Suprakash Datta Office: LAS 3043

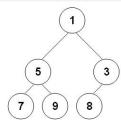
Course page: http://www.eecs.yorku.ca/course/2011M Also on Moodle

Heaps

- Ch. 9.3
 - Binary tree (stored in an array)
 - Keys at nodes
 - All nodes (except possibly the last) are complete

Note: Some slides in this presentation have been adapted from the authors' slides.

Array Representation



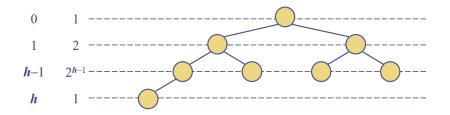
Node	1	5	3	7	9	8
Index	0	1	2	3	4	5

By Chris857. Transferred from en.wikipedia, CCO, https://commons.wikimedia.org/w/index.php?curid=12768492

- For the node at index/rank *i*
 - the left child is at index/rank 2i + 1
 - the right child is at index/rank 2i + 2
- add corresponds to inserting at rank n+1
- Remove min item at rank n moved to rank 1 and the heap adjusted

Heap Height

Theorem: A heap storing *n* keys has height $O(\log n)$ **Proof:** Let *h* be the height of a heap storing *n* keys Since there are 2i keys at depth i = 0, ..., h - 1 and at least one key at depth *h*, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$. Thus, $n \ge 2^h$, i.e., $h \le \log_2 n$.



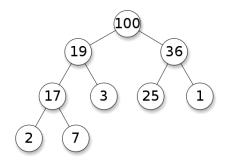
EECS 2011 W18

Heap Property

Min- Heaps:

- For every node v other than the root, key(v) ≤ key(parent(v))
- The last node of a heap is the rightmost node of maximum depth

Max-heaps: $key(v) \ge key(parent(v))$



By Ermishin - Own work, CC BY-SA 3.0, https:

//commons.wikimedia.org/w/index.php?curid=12251273

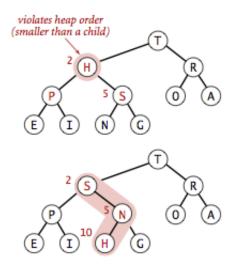
Heaps - Methods

- insert $O(\log n)$ time
- removeMin $O(\log n)$ time
- size
- isEmpty,
- extractMin

Maintaining Heap Property: Downheap

Min- Heaps:

- Restores heap when both children are heaps
- swap key k with min child
- terminates when key k reaches a leaf or a node where heap property holds



Downheap: Analysis

Correctness

- Pre-condition: Both children are heaps
- After swapping root with the min-child, same is true for the child root goes to, the other child is left unchanged.

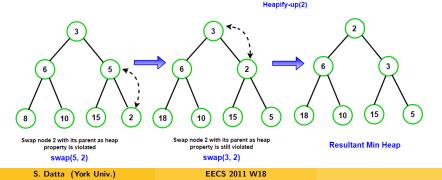
Running time

- After a constant number of steps an element travels down one level
- it travels at most the height of the tree
- Running time: $O(\log n)$

Maintaining Heap Property: Upheap

Min- Heaps:

- Restores heap when parent violates heap property
- swap key k with parent
- terminates when key k reaches the root or a node where heap property holds



9 / 18

Upheap: Analysis

Correctness

- Pre-condition: Both children are heaps
- After swapping node with the parent, same is true for the parent

Running time

- After a constant number of steps an element travels up one level
- it travels at most the height of the tree
- Running time: $O(\log n)$

Heap Insertion and ExtractMin

- Insert at the end of the heap
- Restore the heap using UPHEAP

- Extract the top of the heap
- Delete the last node and put its key in the top node
- Restore the heap using DOWNHEAP

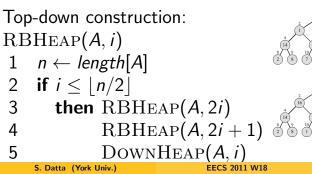
Building Heaps

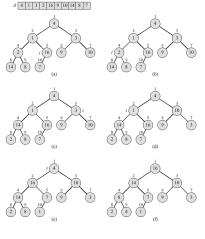
Bottom-up construction: BUILDHEAP(A)

1 $n \leftarrow length[A]$

2 for
$$i = \lfloor n/2 \rfloor$$
 down to 1

3 do DOWNHEAP(A, i)





BuildHeap: Analysis

- **Correctness:** induction on *i*, all trees rooted at m > i are heaps
- **Running time:** less than *n* calls to DownHeap = $n \cdot O(\lg n) = O(n \lg n)$
 - Not a tight bound
 - Intuition: for most of the time DownHeap works on smaller than *n* element heaps

Bottom Up BuildHeap: Tighter Analysis

- Think of nodes at the same height as phases of the algorithm
- Assume $n = 2^k 1$ (complete binary tree), $k = \lfloor \lg n \rfloor$

• Running time:

$$\sum_{h=1}^{k-1} h 2^{k-h} = 2^k \sum_{h=1}^{k-1} \frac{h}{2^h}$$

BUILDHEAP(A) 1 $n \leftarrow length[A]$ 2 for $i = \lfloor \frac{n}{2} \rfloor$ down to 1 3 do DOWNHEAP(A, i)

DownHeap(A, i) takes O(ht(i)) time, ht(i) =height of subtree rooted at node *i*

Bottom Up BuildHeap: Analysis - 2

$$2^{k} \sum_{h=1}^{k-1} \frac{h}{2^{h}} = (n+1) \sum_{h=1}^{k-1} \frac{h}{2^{h}}$$

$$< (n+1) \sum_{h=1}^{\infty} \frac{h}{2^{h}}$$

$$= (n+1) \left[\frac{1/2}{(1-1/2)^{2}} \right]$$

$$= 2(n+1)$$

$$\in O(n)$$

Bottom Up BuildHeap: Analysis - 3

$$\sum_{h=0}^{\infty} x^h = \frac{1}{1-x} \text{ where } |x| < 1$$

$$\sum_{h=0}^{\infty} hx^{h-1} = \frac{1}{(1-x)^2} \text{ differentiating}$$

$$\sum_{h=0}^{\infty} hx^h = \frac{x}{(1-x)^2} \text{ multiplying both sides by } x$$

$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2 \text{ substituting } x = 1/2$$

Using Heaps to Sort

- Gives an in-place sort
- $\theta(n \log n)$ running time
- Steps to sort in decreasing order:
 - Build a min-heap from the unsorted array
 - Keep swapping the minimum and the end of heap, decrement the size of the heap and reheapify (DownHeap).

Heapsort

HEAPSORT(A)

- 1 $n \leftarrow length[A]$
- 2 BUILDHEAP(A)
- 3 **for** i = 1 **to** n
- 4 **do** SWAP(A[1], A[i])
- 5 $length(A) \leftarrow length(A) 1$
- 6 DOWNHEAP(A, 1)

Running time: line 2 takes $\theta(n)$ time. The lopp (lines 3-6) runs *n* times and each iteration takes $O(\log n)$ time. Total time: $O(n \log n)$.