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Heaps

Ch. 9.3
@ Binary tree (stored in an array)

@ Keys at nodes

@ All nodes (except possibly the last) are complete

Note: Some slides in this presentation have been
adapted from the authors’ slides.
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Array Representation
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By Chris857. Transferred from en.wikipedia, CCO, https://commons.wikimedia.org/w/index.php?curid=12768492

Index 0 1 2 3 4 5

@ For the node at index/rank i
e the left child is at index/rank 2i + 1
e the right child is at index/rank 2i + 2

@ add corresponds to inserting at rank n+1
@ Remove min — item at rank n moved to rank 1 and
the heap adjusted

S. Datta (York Univ.) EECS 2011 W18 3/18


https://commons.wikimedia.org/w/index.php?curid=12768492

Heap Height

Theorem: A heap storing n keys has height O(log n)
Proof: Let h be the height of a heap storing n keys
Since there are 2/ keys at depth i =0,...,h— 1 and at
least one key at depth h, we have
n>1+2+4+... +21 41

Thus, n > 2" ie, h< log, n.
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Heap Definition

Heap Property

Min- Heaps:
@ For every node v other @

than the root, @ @

key(v) <

key(parent(v)) @ o 6 o

@ The last node of a heap

is the rightmost node e o

of maximum depth

M ax_hea pS By Ermishin - Own work, CC BY-SA 3.0, https:
key ( V) Z key ( paren t( V) ) //commons.wikimedia.org/w/index.php?curid=12251273
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Heap Definition

Heaps - Methods

insert O(log n) time
removeMin O(log n) time
size

isEmpty,

extractMin
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Heap Methods

Maintaining Heap Property: Downheap

vielates heap order
Min- Heaps: sri-l::lcrr"?r er.,f
@ Restores heap when

both children are heaps
@ swap key k with min
child

@ terminates when key k
reaches a leaf or a node
where heap property (P

holds @,,
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Heap Methods

Downheap: Analysis

Correctness
@ Pre-condition: Both Running time
children are heaps @ After a constant number

@ After swapping root
with the min-child,

child root goes to, the

of steps an element travels
down one level

same is true for the @ it travels at most the
height of the tree

other child is left @ Running time: O(log n)

unchanged.
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Maintaining Heap Property: Upheap

Min- Heaps:
@ Restores heap when parent violates heap property

@ swap key k with parent
@ terminates when key k reaches the root or a node

where heap property holds

Heapify-up(2)

Swap node 2 with its parent as heap ap hode ith its par hea .
property is violated roj Resultant Min Heap

swap(s, 2)

swap(3, 2)
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Heap Methods

Upheap: Analysis

Running time

Correctness

@ After a constant number
of steps an element travels
up one level

@ it travels at most the
height of the tree

@ Running time: O(log n)

@ Pre-condition: Both
children are heaps

@ After swapping node
with the parent, same
is true for the parent
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Heap Methods

Heap Insertion and ExtractMin

@ Extract the top of

the heap
@ Insert at the end of the

@ Delete the last node
heap

and put its key in

@ Restore the heap using the top node

UrPHEAP @ Restore the heap

using DOWNHEAP
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Heap Methods

Building Heaps
Bottom-up construction:
BUILDHEAP(A)

1 n < length[A]

2 for i=|n/2| down to 1
3 do DOWNHEAP(A, /)

Top-down construction:
RBHEAP(A, i)

1 n < length[A]

2 if i < |n/2]

3 then RBHEAP(A, 2/) S,
A RBHEAP(A,2i +1) &%
5 DOwWNHEAP(A, i)
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Heap Methods

BuildHeap: Analysis
@ Correctness: induction on i/, all trees rooted at
m > | are heaps

@ Running time: less than n calls to DownHeap
=n-0O(lgn) = O(nlgn)
e Not a tight bound

@ Intuition: for most of the time DownHeap works on
smaller than n element heaps
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Heap Methods

Bottom Up BuildHeap: Tighter Analysis

@ Think of nodes at the
same height as phases of BUILDHEAP(A)

the algorithm 1 n < length[A]

@ Assume n =2k -1 2 fori= I_gJ down to 1
(complete binary tree), 3 do DOwWNHEAP(A, i)
k= |lgn]| _

e Running time: DownHeap(A, i) takes

O(ht(i)) time, ht(i) =
k-1 P k=1 p height of subtree
h2* " =2 Z oh rooted at node i
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Heap Methods

Bottom Up BuildHeap: Analysis - 2

2k§::2—hh = (n+1) : 2—/2
< (n+1)22—f;
1/2
= 040 =
= 2(n+1)
€ O(n)
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Heap Methods

Bottom Up BuildHeap: Analysis - 3

8

Z hx"

h=
°°h
Z—,,
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(1-1/2)

1
—— where |x| <1
1—x

1
(1—x)?

differentiating

(1—x)
1/2

multiplying both sides by x

= 2 substituting x = 1/2
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Heap Sort

Using Heaps to Sort

@ Gives an in-place sort
@ d(nlog n) running time

@ Steps to sort in decreasing order:
© Build a min-heap from the unsorted array

© Keep swapping the minimum and the end of heap,

decrement the size of the heap and reheapify
(DownHeap).
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Heap Sort

Heapsort

HEAPSORT(A)

n < length[A]

2 BUILDHEAP(A)

3 fori=1ton

4 do swap(A[1], A[i])

5 length(A) < length(A) — 1
6 DowNHEAP(A, 1)

=

Running time: line 2 takes §(n) time. The lopp (lines
3-6) runs n times and each iteration takes O(log n) time.
Total time: O(nlog n).
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