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Heaps

Ch. 9.3

Binary tree (stored in an array)

Keys at nodes

All nodes (except possibly the last) are complete

Note: Some slides in this presentation have been
adapted from the authors’ slides.
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Array Representation

By Chris857. Transferred from en.wikipedia, CC0, https://commons.wikimedia.org/w/index.php?curid=12768492

For the node at index/rank i
the left child is at index/rank 2i + 1
the right child is at index/rank 2i + 2

add corresponds to inserting at rank n + 1
Remove min – item at rank n moved to rank 1 and
the heap adjusted
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Heap Height

Theorem: A heap storing n keys has height O(log n)
Proof: Let h be the height of a heap storing n keys
Since there are 2i keys at depth i = 0, . . . , h − 1 and at
least one key at depth h, we have
n ≥ 1 + 2 + 4 + . . . + 2h−1 + 1.
Thus, n ≥ 2h , i.e., h ≤ log2 n.
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Heap Definition

Heap Property

Min- Heaps:

For every node v other
than the root,
key(v) ≤
key(parent(v))

The last node of a heap
is the rightmost node
of maximum depth

Max-heaps:
key(v) ≥ key(parent(v))

By Ermishin - Own work, CC BY-SA 3.0, https:

//commons.wikimedia.org/w/index.php?curid=12251273
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Heap Definition

Heaps - Methods

insert O(log n) time

removeMin O(log n) time

size

isEmpty,

extractMin
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Heap Methods

Maintaining Heap Property: Downheap

Min- Heaps:

Restores heap when
both children are heaps

swap key k with min
child

terminates when key k
reaches a leaf or a node
where heap property
holds
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Heap Methods

Downheap: Analysis

Correctness

Pre-condition: Both
children are heaps
After swapping root
with the min-child,
same is true for the
child root goes to, the
other child is left
unchanged.

Running time

After a constant number
of steps an element travels
down one level
it travels at most the
height of the tree
Running time: O(log n)
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Heap Methods

Maintaining Heap Property: Upheap

Min- Heaps:
Restores heap when parent violates heap property
swap key k with parent
terminates when key k reaches the root or a node
where heap property holds
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Heap Methods

Upheap: Analysis

Correctness

Pre-condition: Both
children are heaps
After swapping node
with the parent, same
is true for the parent

Running time

After a constant number
of steps an element travels
up one level
it travels at most the
height of the tree
Running time: O(log n)
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Heap Methods

Heap Insertion and ExtractMin

Insert at the end of the
heap

Restore the heap using
UpHeap

Extract the top of
the heap

Delete the last node
and put its key in
the top node

Restore the heap
using DownHeap
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Heap Methods

Building Heaps
Bottom-up construction:
BuildHeap(A)
1 n← length[A]
2 for i = bn/2c down to 1
3 do DownHeap(A, i)

Top-down construction:
RBHeap(A, i)
1 n← length[A]
2 if i ≤ bn/2c
3 then RBHeap(A, 2i)
4 RBHeap(A, 2i + 1)
5 DownHeap(A, i)
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Heap Methods

BuildHeap: Analysis

Correctness: induction on i , all trees rooted at
m > i are heaps

Running time: less than n calls to DownHeap
= n · O(lg n) = O(n lg n)

Not a tight bound

Intuition: for most of the time DownHeap works on
smaller than n element heaps
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Heap Methods

Bottom Up BuildHeap: Tighter Analysis

Think of nodes at the
same height as phases of
the algorithm
Assume n = 2k − 1
(complete binary tree),
k = blg nc
Running time:

k−1∑
h=1

h2k−h = 2k
k−1∑
h=1

h

2h

BuildHeap(A)
1 n← length[A]
2 for i = bn2c down to 1
3 do DownHeap(A, i)

DownHeap(A, i) takes
O(ht(i)) time, ht(i) =
height of subtree
rooted at node i
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Heap Methods

Bottom Up BuildHeap: Analysis - 2

2k
k−1∑
h=1

h

2h
= (n + 1)

k−1∑
h=1

h

2h

< (n + 1)
∞∑
h=1

h

2h

= (n + 1)

[
1/2

(1− 1/2)2

]
= 2(n + 1)

∈ O(n)
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Heap Methods

Bottom Up BuildHeap: Analysis - 3

∞∑
h=0

xh =
1

1− x
where |x | < 1

∞∑
h=0

hxh−1 =
1

(1− x)2
differentiating

∞∑
h=0

hxh =
x

(1− x)2
multiplying both sides by x

∞∑
h=0

h

2h
=

1/2

(1− 1/2)2
= 2 substituting x = 1/2
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Heap Sort

Using Heaps to Sort

Gives an in-place sort

θ(n log n) running time

Steps to sort in decreasing order:
1 Build a min-heap from the unsorted array
2 Keep swapping the minimum and the end of heap,

decrement the size of the heap and reheapify
(DownHeap).
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Heap Sort

Heapsort

HeapSort(A)
1 n← length[A]
2 BuildHeap(A)
3 for i = 1 to n
4 do swap(A[1],A[i ])
5 length(A)← length(A)− 1
6 DownHeap(A, 1)

Running time: line 2 takes θ(n) time. The lopp (lines
3-6) runs n times and each iteration takes O(log n) time.
Total time: O(n log n).
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