
EECS 201109/09/17 1

Instructor: Suprakash Datta

Office : LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

Note: Some slides in this lecture are adopted from James Elder’ slides.

EECS 2011M: Fundamentals of Data
Structures

EECS 201109/09/17 2

1. We have seen that sorted data allow faster
operations than unsorted data

2. Fundamental step in algorithm design
3. There are many available sorting algorithms,

and we need to understand them to select the
best one for an application

Sorting: Motivation

EECS 201109/09/17 3

1. We want to be able to sort any data as long as
we can compare them (i.e., an appropriate
comparator is available)

2. For this lecture we restrict ourselves only to
comparison-based sorts

3. We assume that the data are stored in arrays

Sorting: Problem

EECS 201109/09/17 4

1. Very general, makes no assumptions about the
type of data. The data may not be only keys.
They may be records with a key that is used to
sort

2. Work by comparing elements and moving data
around based on comparison results

3. Algorithms we will look at are: selection sort,
bubble sort, insertion sort, merge sort, quick
sort, heap sort

Comparison-based Sorting

EECS 201109/09/17 5

1. In-place sort: Use only O(1) extra space (in
addition to the data)

2. Stable sort: the ordering of identical keys in the
input is preserved in the output.

3. Algorithms we will look at are: selection sort,
bubble sort, insertion sort, merge sort, quick
sort, heap sort

(Sub) Classes of Sorting Algorithms

EECS 201109/09/17 6

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet
unselected integers.

Not-in-place version:
1. find the next smallest value, mark it “deleted” and copy it

to an output array.
2. Continue in this way until all the input elements have

been selected and placed in the output list in the
correct order.

Selection sort

Is this precise enough?

EECS 201109/09/17 7

Algorithm: Given an array A of n integers, sort them by
repetitively selecting the smallest among the yet
unselected integers.

In-place version:

1. Swap the smallest integer with the integer currently in
the place where the smallest integer should go.

2. Continue in this way until all the input elements have
been selected and placed in the output list in the
correct order.

Selection sort

Is this precise enough?

EECS 201109/09/17 8

for i = 0 to n-1
//Loop Invariant = ?
jmin = i
for j = i+1 to n-1

if A[j] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Selection sort

EECS 201109/09/17 9

for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys
in sorted order.

jmin = i
for j = i+1 to n-1

if A[j] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Selection sort

Is this precise enough?

EECS 201109/09/17 10

for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys
in sorted order.
// A[i…n-1] contains the remaining keys

jmin = i
for j = i+1 to n-1

if A[j] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Exercise: complete the proof of correctness

Selection sort

EECS 201109/09/17 11

for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys
in sorted order.
// A[i…n-1] contains the remaining keys

jmin = i
for j = i+1 to n-1

if A[j] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Running time: Θ(𝑛𝑛2)

Selection sort

Running time?

Θ(n-i-1)

EECS 201109/09/17 12

for i = n-1 downto 1
//Loop Invariant : A[i+1…n-1] contains the n-i-1 largest
keys in sorted order.
//A[0…i] contains the remaining keys

for j = 0 to i-1
if A[j] > A[j + 1]

swap A[j] and A[j + 1]

Running time: Θ(𝑛𝑛2)

Useful for practice in proving correctness, and little else

Bubble sort

Running time?

Θ(i)

EECS 201109/09/17 13

“We maintain a subset of elements sorted within a list.
The remaining elements are off to the side somewhere.
Initially, think of the first element in the array as a
sorted list of length one. One at a time, we take one of
the elements that is off to the side and we insert it into
the sorted list where it belongs. This gives a sorted list
that is one element longer than it was before. When the
last element has been inserted, the array is completely
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Analysis example: Insertion sort

EECS 201109/09/17 14

Insertion sort: pseudocode

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

What is a good loop invariant?

EECS 201109/09/17 15

Correctness of Insertion sort

for i=1 to length(A)-1
do key=A[i]

//Insert A[i] into the sorted
//sequence A[0..i-1]

j=i
while j>0 and A[j-

1]>key
do A[j]=A[j-1]

j--
A[j]:=key

Invariant: at the start of
for loop iteration i, A[0…i-1]
consists of elements
originally in A[0…i-1] but in
sorted order,
A[i…n-1] contains the
remaining keys

Initialization: i= 1, the invariant trivially holds because
A[0] is a sorted array 

EECS 201109/09/17 16

Correctness of Insertion sort – contd.

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Invariant: at the start of
for loop iteration i, A[0…i-1]
consists of elements
originally in A[0…i-1] but in
sorted order,
A[i…n-1] contains the
remaining keys

Maintenance: the inner while loop moves elements A[k],
A[k+1], …, A[i-1] one position right without changing their
order. Then the former A[j] element is inserted into kth

position so that A[k-1] ≤ A[k] ≤ A[k+1].
A[0…i-1] sorted + A[i] → A[0…i] sorted

EECS 201109/09/17 17

Correctness of Insertion sort – contd.

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Invariant: at the start of
for loop iteration i, A[0…i-1]
consists of elements
originally in A[0…i-1] but in
sorted order,
A[i…n-1] contains the
remaining keys

Termination: the loop terminates, when i=n.
Then the invariant states: “A[0…n-1] consists of elements
originally in A[0…n-1] but in sorted order” 

EECS 2011

Divide and conquer

Divide-and conquer is a general algorithm
design paradigm:

1.Divide: divide the input data S in two disjoint
subsets S1 and S2

2.Conquer: solve the subproblems associated
with S1 and S2 (often done recursively)

3.Combine: combine the solutions for S1 and S2
into a solution for S

The base case for the recursion is a subproblem of
size 0 or 1

EECS 2011

More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs
to be done if S has zero or one elements), remove all
the elements from S and put them into two
sequences, S1 and S2 , each containing about half of
the elements of S. (i.e. S1 contains the first
n/2 elements and S2 contains the remaining
n/2 elements).

• Conquer: Sort sequences S1 and S2 using Merge
Sort.

• Combine: Put back the elements into S by merging
the sorted sequences S1 and S2 into one sorted
sequence

EECS 2011

Merge Sort: Algorithm

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge(A, p, q, r)
Take the smallest of the two topmost elements of

sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

EECS 2011

The Merge Step

1. Merging two sorted sequences, each with n/2 elements
takes O(n) time

2. Straightforward to make the sort stable.
3. Normally, merging is not in-place: new memory must be

allocated to hold S.
4. It is possible to do in-place merging using linked lists.

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: example

EECS 2011

Merge Sort: summary
• To sort n numbers

– if n=1 done!
– recursively sort 2 lists of

numbers n/2 and n/2
elements

– merge 2 sorted lists in Θ(n)
time

• Strategy
– break problem into similar

(smaller) subproblems
– recursively solve

subproblems
– combine solutions to answer

EECS 2011

Recurrences

• Running times of algorithms with Recursive calls
can be described using recurrences

• A recurrence is an equation or inequality that
describes a function in terms of its value on smaller
inputs

Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1
n

T n
T n n n

Θ =
=  + Θ >

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1
n

T n
T n n

=
=  + + >

EECS 2011

Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences

EECS 2011

Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute
– Expand
– …
– Observe a pattern and write how your expression

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into

your expression

EECS 2011

Master Method
• The idea is to solve a class of recurrences that have

the form

• a ≥ 1 and b > 1, and f is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an

algorithm and we know that
– a subproblems of size n/b are solved recursively,

each in time T(n/b)
– f(n) is the cost of dividing the problem and

combining the results. In merge-sort

() (/) ()T n aT n b f n= +

() 2 (/ 2) ()T n T n n= + Θ

EECS 2011

Master Theorem Summarized
• Given a recurrence of the form

• The master method cannot solve every recurrence
of this form; there is a gap between cases 1 and 2,
as well as cases 2 and 3

() (/) ()T n aT n b f n= +
()

()
()

()
()

()

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n

−ε

+ε

=

⇒ = Θ

= Θ

⇒ = Θ

= Ω ≤ < >

⇒ = Θ

EECS 2011

Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine
• Compare f(n) and asymptotically
• Determine appropriate MT case, and apply
• Example merge sort

logb an

() ()

2log log 2

log

() 2 (/ 2) ()
2, 2; ()

Also () ()

Case 2 () lg lg:

b

b

a

a

T n T n n
a b n n n n

f n n

T n n n n n

= + Θ

= = = = = Θ
= Θ

⇒ = Θ = Θ

logb an

EECS 2011

Examples

()

2

3

log 1

log 9

2

() (/ 2) 1
1, 2; 1

also () 1, () (1)
() (lg)

(

Case 2:

Cas

) 9 (/ 3)
9, 3;

() , () () with 1

()e 1:

T n T n
a b n

f n f n
T n n

T n T n n
a b
f n n f n O n

T n n

−ε

= +

= = =
= = Θ

⇒ = Θ

= +
= =

= = ε =

⇒ = Θ

Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

EECS 2011

Examples

()

2

3

log 4 2

3 2

3

3 3

3 3

() 4 (/ 2)
4, 2;

 () ; () ()

()

Checking the regularity condition
4 (/

Cas

2) ()
4 / 8

/ 2
3/ 4

e 3:

1

T n T n n
a b n n
f n n f n n

T n n

f n cf n
n cn

n cn
c

= +

= = =

= = Ω

⇒ = Θ

≤

≤

≤
= <

Sorting algorithms so far

• Insertion sort, selection sort
– Worst-case running time Θ(n2); in-place

• Merge sort
– Worst-case running time Θ(n log n), but requires

additional memory Θ(n);

Improving Selection sort

• A takes Θ(n) and B takes Θ(1): Θ(n2) in total
• One idea for improvement: use a data structure

(heap), to do both A and B in O(lg n) time, balancing
the work, achieving a better trade-off, and a total
running time O(n log n).

• We have already seen how heap-sort does
this.

Selection-Sort(A[1..n]):
For i → n downto 2

A: Find the largest element among A[1..i]
B: Exchange it with A[i]

Heap sort

The total running time of heap sort is O(n lg n)
+ Build-Heap(A) time, which is O(n)

O()n

Heap sort

Heap Sort: Summary

• Heap sort uses a heap data structure to
improve selection sort and make the running
time asymptotically optimal

• Running time is O(n log n) – like merge sort,
but unlike selection, insertion, or bubble sorts

• Sorts in place – like insertion, selection or
bubble sorts, but unlike merge sort

Heap Sort is Not Stable

Example (MaxHeap)

3
21

3
21

2

3
22

1

insert(2) upheap

3
2 insert(2)

1st2nd

3
22

1st 2nd

Quick Sort

• Characteristics
– sorts in place, i.e., does not require an additional

array, like insertion sort
– Divide-and-conquer, like merge sort
– very practical, average sort performance O(n log

n) (with small constant factors), but worst case
O(n2)

– May be randomized (GTG gives this version)
– The first GTG version is not in-place

Quick Sort – the main idea

• To understand quick-sort, let’s look at a high-
level description of the algorithm

• A divide-and-conquer algorithm
– Divide: partition array into 2 subarrays such that

elements in the lower part <= elements in the
higher part

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in place

Quick-Sort

61

Quick-Sort (GTG)

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:
1. Divide: pick a random

element x (called pivot) and
partition S into

L elements less than x
E elements equal x
G elements greater than x

2. Recur: sort L and G
3. Conquer: join L, E and G

x

x

L GE

x

EECS 2011

Partition

We partition an input
sequence as follows:
We remove, in turn, each

element y from S and
We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.addLast(y)
else if y = x

E.addLast(y)
else { y > x }

G.addLast(y)
return L, E, G

Java Implementation

EECS 2011

EECS 2011

In place, deterministic (non-randomized)
Quicksort

• Choose a pivot deterministically: say the last
element of the array

• Define partition to be in place

Partitioning

• Linear time partitioning procedure

Partition(A,p,r)
01 x←A[r]
02 i←p-1
03 j←r+1
04 while TRUE
05 repeat j←j-1
06 until A[j] ≤x
07 repeat i←i+1
08 until A[i] ≥x
09 if i<j
10 then exchange A[i]↔A[j]
11 else return j

17 12 6 19 23 8 5 10
i ji j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

≤ X=10 ≤

Quick Sort Algorithm

• Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)
01 if p<r
02 then q←Partition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)

Analysis of Quicksort

• Assume that all input elements are distinct
• The running time depends on the distribution

of splits

Best Case

• If we are lucky, Partition splits the array
evenly () 2 (/ 2) ()T n T n n= + Θ

Using the median as a pivot

• The recurrence in the previous slide works
out, BUT……

Q: Can we find the median in linear-time?
A: YES! But the algorithm is complex and has

large constants, and is of limited use in
practice

Worst Case

• What is the worst case?
• One side of the parition has only one element

1

1
2

() (1) (1) ()
(1) ()

()

()

()

n

k
n

k

T n T T n n
T n n

k

k

n

=

=

= + − + Θ
= − +Θ

= Θ

= Θ

= Θ

∑

∑

Worst Case (2)

Worst Case (3)

• When does the worst case appear?
– input is sorted
– input reverse sorted

• Same recurrence for the worst case of
insertion sort

• However, sorted input yields the best case for
insertion sort!

Analysis of Quicksort

• Suppose the split is 1/10 : 9/10
() (/10) (9 /10) () (log)!T n T n T n n n n= + + Θ = Θ

An Average Case Scenario

• Suppose, we alternate
lucky and unlucky
cases to get an
average behavior

() 2 (/ 2) () lucky
() (1) () unlucky

we consequently get
() 2((/ 2 1) (/ 2)) ()

2 (/ 2 1) ()
(log)

L n U n n
U n L n n

L n L n n n
L n n

n n

= + Θ
= − + Θ

= − + Θ + Θ
= − + Θ
= Θn

1 n-1

(n-1)/2 (n-1)/2

()nΘ

(n-1)/2+1 (n-1)/2

n ()nΘ

An Average Case Scenario (2)

• How can we make sure that we are usually
lucky?
– Partition around a random element (works well in

practice)
• Randomized algorithm

– running time is independent of the input ordering
– no specific input triggers worst-case behavior
– the worst-case is only determined by the output of

the random-number generator

Summary of Comparison Sorts

Algorithm Best
Case

Worst
Case

Average
Case

In
Place

Stable Comments

Selection n2 n2 Yes Yes

Bubble n n2 Yes Yes Must count swaps for linear best case
running time.

Insertion n n2 Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that
require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in practice

But not both!

Next: How fast can we Sort?

We have seen algorithms with worst case
Θ(n2) and Θ(n log n) times.

Can we improve to O(n)?

We cannot do better because we have to
read and write n elements

Lower bounds: a provable minimum worst
case time for a problem

Comparison-based algorithms

• The algorithm only uses the results of comparisons,
not values of elements (*).

• Very general – does not assume much about what
type of data is being sorted.

• However, other kinds of algorithms are possible!
• In this model, it is reasonable to count #comparisons.
• Note that the #comparisons is a lower bound on the

running time of an algorithm.

(*) If values are used, lower bounds proved in this
model are not lower bounds on the running time.

Points to note

Crucial observations: We must prove our claim about ANY
algorithm that only uses comparisons to find the
minimum.

Specifically, we made no assumptions about

1. Nature of algorithm.
2. Order or number of comparisons.
3. Optimality of algorithm
4. Whether the algorithm is reasonable – e.g. it could be a

very wasteful algorithm, repeating the same
comparisons.

Lower bounds for Comparison-based
Sorting

Claim: Any comparison-based sorting algorithm
must have a worst-case rime of Ω(n log n)

Unfortunate facts:
Lower bounds are usually hard to prove.
Virtually no known general techniques – must

try ad hoc methods for each problem.

Lower bounds for comparison-based sorting

• Trivial: Ω(n) – every element must take part in a
comparison.

• Best possible result – Ω(n log n) comparisons, since
we already know several O(n log n) sorting algorithms.

• Proof is non-trivial: how do we reason about all possible
comparison-based sorting algorithms?

The Decision Tree Model

• Assumptions:
– All numbers are distinct (so no use for ai = aj)
– All comparisons have form ai ≤ aj (since ai ≤ aj, ai ≥

aj, ai < aj, ai > aj are equivalent).
• Decision tree model

– Full binary tree
– Ignore control, movement, and all other operations,

just use comparisons.
– suppose three elements < a1, a2, a3> with instance

<6,8,5>.

Sorting Lower Bound

Counting Comparisons

Let us just count comparisons then.
Each possible run of the algorithm

corresponds to a root-to-leaf path in a
decision tree xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?

The Decision Tree Model - contd

• Consider Insertion sort again

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

Example: insertion sort (n=3)

A[2]: A[3] A[1]: A[3]

A[1]: A[2]

A[1]: A[3] A[2]: A[3]

>

>

>>

>

≤

≤

≤

≤

≤

A[1]A[2]A[3]

A[1]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1]

A[2]A[1]A[3]

A[3]A[2]A[1]

The Decision Tree Model

2:3

1:2

2:3

1:3

1:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤

≤ ≤

≤

>

>

>

>

>

Internal node i:j indicates comparison between ai and aj.
Leaf node <π(1), π(2), π(3)> indicates ordering aπ(1)≤ aπ(2)≤ aπ(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

≤

Summary

Only consider comparisons
 Each internal node = 1 comparison
 Start at root, make the first comparison

- if the outcome is ≤ take the LEFT branch
- if the outcome is > - take the RIGHT branch

 Repeat at each internal node

 Each LEAF represents ONE correct ordering

Lower bound for the worst case

• Claim: The decision tree must have at least n! leaves.
WHY?

• worst case number of comparisons= the height of the
decision tree.

• Claim: Any comparison sort in the worst case needs Ω(n
log n) comparisons.

• Suppose height of a decision tree is h, number of paths
(i,e,, permutations) is n!.

• Since a binary tree of height h has at most 2h leaves,

n! ≤ 2h , so h ≥ lg (n!) ≥ Ω(n lg n)

Lower bound: limitations

Q: Can we beat the lower bound for sorting?
A: In general no, but in some special cases YES!

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Divide and conquer
	More divide and conquer : Merge Sort
	Merge Sort: Algorithm 	
	The Merge Step
	Merge Sort: example	
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: example
	Merge Sort: summary
	Recurrences
	Solving recurrences
	Repeated Substitution Method
	Master Method
	Master Theorem Summarized
	Using the Master Theorem
	Examples
	Examples
	Sorting algorithms so far
	Improving Selection sort
	Heap sort
	Heap sort
	Heap Sort: Summary
	Heap Sort is Not Stable
	Quick Sort
	Quick Sort – the main idea
	Quick-Sort (GTG)
	Partition
	Java Implementation
	In place, deterministic (non-randomized) Quicksort
	Partitioning
	Quick Sort Algorithm
	Analysis of Quicksort
	 Best Case
	Using the median as a pivot
	Worst Case
	Worst Case (2)
	Worst Case (3)
	Analysis of Quicksort
	An Average Case Scenario
	An Average Case Scenario (2)
	Summary of Comparison Sorts
	Next: How fast can we Sort?
	Comparison-based algorithms
	Points to note
	Lower bounds for Comparison-based Sorting
	Lower bounds for comparison-based sorting
	The Decision Tree Model
	Counting Comparisons
	The Decision Tree Model - contd
	Example: insertion sort (n=3)
	The Decision Tree Model
	Summary
	Lower bound for the worst case
	Lower bound: limitations

