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Instructor: Suprakash Datta 

Office : LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

Note: Some slides in this lecture are adopted from James Elder’ slides.

EECS 2011M: Fundamentals of Data 
Structures
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1. We have seen that sorted data allow faster 
operations than unsorted data

2. Fundamental step in algorithm design
3. There are many available sorting algorithms, 

and we need to understand them to select the 
best one for an application

Sorting: Motivation
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1. We want to be able to sort any data as long as 
we can compare them (i.e., an appropriate 
comparator is available)

2. For this lecture we restrict ourselves only to 
comparison-based sorts

3. We assume that the data are stored in arrays              

Sorting: Problem
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1. Very general, makes no assumptions about the 
type of data. The data may not be only keys. 
They may be records with a key that is used to 
sort

2. Work by comparing elements and moving data 
around based on comparison results

3. Algorithms we will look at are: selection sort, 
bubble sort, insertion sort, merge sort, quick 
sort, heap sort

Comparison-based Sorting
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1. In-place sort: Use only O(1) extra space (in 
addition to the data)

2. Stable sort: the ordering of identical keys in the 
input is preserved in the output.

3. Algorithms we will look at are: selection sort, 
bubble sort, insertion sort, merge sort, quick 
sort, heap sort

(Sub) Classes of Sorting Algorithms
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Algorithm: Given an array A of n integers, sort them by 
repetitively selecting the smallest among the yet 
unselected integers.  

Not-in-place version:
1. find the next smallest value, mark it “deleted” and copy it 

to an output array.
2.  Continue in this way until all the input elements have 

been selected and placed in the output list in the 
correct order.

Selection sort

Is this precise enough?
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Algorithm: Given an array A of n integers, sort them by 
repetitively selecting the smallest among the yet 
unselected integers.  

In-place version:

1. Swap the smallest integer with the integer currently in 
the place where the smallest integer should go.

2.  Continue in this way until all the input elements have 
been selected and placed in the output list in the 
correct order.

Selection sort

Is this precise enough?
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for i = 0 to n-1
//Loop Invariant = ?
jmin = i
for j = i+1 to n-1

if A[ j ] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Selection sort
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for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys 
in sorted order.  

jmin = i
for j = i+1 to n-1

if A[ j ] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Selection sort

Is this precise enough?
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for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys 
in sorted order.  
// A[i…n-1] contains the remaining keys

jmin = i
for j = i+1 to n-1

if A[ j ] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Exercise: complete the proof of correctness

Selection sort
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for i = 0 to n-1
//Loop Invariant: A[0…i-1] contains the i smallest keys 
in sorted order.  
// A[i…n-1] contains the remaining keys

jmin = i
for j = i+1 to n-1

if A[ j ] < A[jmin]
jmin = j

swap A[i] with A[jmin]

Running time:  Θ(𝑛𝑛2)

Selection sort

Running time?

Θ(n-i-1)
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for i = n-1 downto 1
//Loop Invariant : A[i+1…n-1] contains the n-i-1 largest 
keys in sorted order.  
//A[0…i] contains the remaining keys

for j = 0 to i-1
if A[ j ] > A[ j + 1 ]

swap A[ j ] and A[ j + 1 ]

Running time:  Θ(𝑛𝑛2)

Useful for practice in proving correctness, and little else

Bubble sort

Running time?

Θ(i)
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“We maintain a subset of elements sorted within a list. 
The remaining elements are off to the side somewhere. 
Initially, think of the first element in the array as a 
sorted list of length one. One at a time, we take one of 
the elements that is off to the side and we insert it into 
the sorted list where it belongs. This gives a sorted list 
that is one element longer than it was before. When the 
last element has been inserted, the array is completely 
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Analysis example: Insertion sort
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Insertion sort: pseudocode

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

What is a good loop invariant?
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Correctness of Insertion sort

for i=1 to length(A)-1
do key=A[i]

//Insert A[i] into the sorted      
//sequence A[0..i-1]

j=i
while j>0 and A[j-

1]>key
do A[j]=A[j-1]

j--
A[j]:=key

Invariant: at the start of 
for loop iteration i, A[0…i-1]  
consists of elements 
originally in A[0…i-1] but in 
sorted order, 
A[i…n-1] contains the 
remaining keys

Initialization: i= 1, the invariant trivially holds because 
A[0] is a sorted array 
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Correctness of Insertion sort – contd.

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Invariant: at the start of 
for loop iteration i, A[0…i-1]  
consists of elements 
originally in A[0…i-1] but in 
sorted order, 
A[i…n-1] contains the 
remaining keys

Maintenance: the inner while loop moves elements A[k],
A[k+1], …, A[i-1] one position right without changing their 
order. Then the former A[j] element is inserted into kth

position so that A[k-1] ≤ A[k] ≤ A[k+1].
A[0…i-1] sorted + A[i] → A[0…i] sorted 
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Correctness of Insertion sort – contd.

for i=1 to length(A)-1
do key=A[i]

j=i
while j>0 and A[j-1]>key

do A[j]=A[j-1]
j--

A[j]:=key

Invariant: at the start of 
for loop iteration i, A[0…i-1]  
consists of elements 
originally in A[0…i-1] but in 
sorted order, 
A[i…n-1] contains the 
remaining keys

Termination: the loop terminates, when i=n. 
Then the invariant states: “A[0…n-1] consists of elements 
originally in A[0…n-1] but in sorted order” 
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Divide and conquer

Divide-and conquer is a general algorithm 
design paradigm:

1.Divide: divide the input data S in two disjoint 
subsets S1 and S2

2.Conquer: solve the subproblems associated 
with S1 and S2  (often done recursively)

3.Combine: combine the solutions for S1 and S2
into a solution for S

The base case for the recursion is a subproblem of 
size 0 or 1
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More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs 
to be done if S has zero or one elements), remove all 
the elements from S and put them into two 
sequences, S1 and S2 , each containing about half of 
the elements of S. (i.e. S1 contains the first
n/2 elements and S2 contains the remaining 
n/2 elements).

• Conquer: Sort sequences S1 and S2 using Merge 
Sort.

• Combine: Put back the elements into S by merging 
the sorted sequences S1 and S2 into one sorted 
sequence
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Merge Sort: Algorithm

Merge-Sort(A, p, r)
if p < r then

q←(p+r)/2
Merge-Sort(A, p, q)
Merge-Sort(A, q+1, r)
Merge(A, p, q, r)

Merge(A, p, q, r)
Take the smallest of the two topmost elements of 

sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 
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The Merge Step

1. Merging two sorted sequences, each with n/2 elements 
takes O(n) time 

2.  Straightforward to make the sort stable.
3. Normally, merging is not in-place:  new memory must be 

allocated to hold S.
4. It is possible to do in-place merging using linked lists.
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Merge Sort: example
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Merge Sort: summary
• To sort n numbers

– if n=1 done!
– recursively sort 2 lists of 

numbers n/2 and n/2
elements

– merge 2 sorted lists in Θ(n) 
time

• Strategy
– break problem into similar 

(smaller) subproblems
– recursively solve 

subproblems
– combine solutions to answer
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Recurrences

• Running times of algorithms with Recursive calls
can be described using recurrences

• A recurrence is an equation or inequality that 
describes a function in terms of its value on smaller 
inputs

Example: Merge Sort

(1)   if 1
( )

2 ( / 2) ( )   if 1
n

T n
T n n n

Θ =
=  + Θ >

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1
n

T n
T n n

=
=  + + >
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Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and 

noticing patterns
• Substitution method

– guessing the solutions
– verifying the solution by the mathematical 

induction
• Recursion-trees
• Master method

– templates for different classes of recurrences
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Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute 
– Expand
– …
– Observe a pattern and write how your expression 

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to 

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into 

your expression
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Master Method
• The idea is to solve a class of recurrences that have 

the form

• a ≥ 1 and b > 1, and f  is asymptotically positive!
• Abstractly speaking, T(n) is the runtime for an 

algorithm and we know that
– a subproblems of size n/b are solved recursively, 

each in time T(n/b)
– f(n) is the cost of dividing the problem and 

combining the results. In merge-sort 

( ) ( / ) ( )T n aT n b f n= +

( ) 2 ( / 2) ( )T n T n n= + Θ
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Master Theorem Summarized
• Given a recurrence of the form 

• The master method cannot solve every recurrence 
of this form; there is a gap between cases 1 and 2, 
as well as cases 2 and 3

( ) ( / ) ( )T n aT n b f n= +
( )

( )
( )

( )
( )

( )

log

log

log

log

log
0

1. ( )

( )

2. ( )  

( ) lg

3. ( )  and ( / ) ( ),  for some 1,

( ) ( )

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n

−ε

+ε

=

⇒ = Θ

= Θ

⇒ = Θ

= Ω ≤ < >

⇒ = Θ
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Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine 
• Compare f(n) and             asymptotically 
• Determine appropriate MT case, and apply
• Example merge sort

logb an

( ) ( )

2log log 2

log

( ) 2 ( / 2) ( )
2,  2;  ( )

Also ( ) ( )

Case 2 ( ) lg lg:  

b

b

a

a

T n T n n
a b n n n n

f n n

T n n n n n

= + Θ

= = = = = Θ
= Θ

⇒ = Θ = Θ

logb an
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Examples

( )

2

3

log 1

log 9

2

( ) ( / 2) 1
1, 2;  1

also ( ) 1, ( ) (1)
( ) (lg )

(

Case 2:  

Cas

) 9 ( / 3)
9, 3;  

( ) ,  ( ) ( ) with 1

( )e 1:  

T n T n
a b n

f n f n
T n n

T n T n n
a b
f n n f n O n

T n n

−ε

= +

= = =
= = Θ

⇒ = Θ

= +
= =

= = ε =

⇒ = Θ

Binary-search(A, p, r, s):
q←(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)      
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Examples

( )
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3 2
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3 3
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Sorting algorithms so far

• Insertion sort, selection sort
– Worst-case running time Θ(n2); in-place

• Merge sort
– Worst-case running time Θ(n log n), but requires 

additional memory Θ(n); 



Improving Selection sort

• A takes Θ(n) and B takes Θ(1): Θ(n2) in total
• One idea for improvement: use a data structure 

(heap), to do both A and B in O(lg n) time, balancing 
the work, achieving a better trade-off, and a total 
running time O(n log n).

• We have already seen how heap-sort does 
this.

Selection-Sort(A[1..n]):
For i → n downto 2

A:    Find the largest element among A[1..i]   
B:    Exchange it with A[i]



Heap sort

The total running time of heap sort is  O(n lg n) 
+ Build-Heap(A) time, which is O(n)

O( )n



Heap sort



Heap Sort: Summary

• Heap sort uses a heap data structure to 
improve selection sort and make the running 
time asymptotically optimal

• Running time is O(n log n) – like merge sort, 
but unlike selection, insertion, or bubble sorts

• Sorts in place – like insertion, selection or 
bubble sorts, but unlike merge sort



Heap Sort is Not Stable

Example (MaxHeap)

3
21

3
21

2

3
22

1

insert(2) upheap

3
2 insert(2)

1st2nd

3
22

1st 2nd



Quick Sort

• Characteristics
– sorts in place, i.e., does not require an additional 

array, like insertion sort
– Divide-and-conquer, like merge sort
– very practical, average sort performance O(n log 

n) (with small constant factors), but worst case 
O(n2)

– May be randomized (GTG gives this version)
– The first GTG version is not in-place



Quick Sort – the main idea

• To understand quick-sort, let’s look at a high-
level description of the algorithm

• A divide-and-conquer algorithm
– Divide: partition array into 2 subarrays such that 

elements in the lower part <= elements in the 
higher part

– Conquer: recursively sort the 2 subarrays
– Combine: trivial since sorting is done in place



Quick-Sort

61

Quick-Sort (GTG)

Quick-sort is a randomized
sorting algorithm based 
on the divide-and-conquer 
paradigm:
1. Divide: pick a random 

element x (called pivot) and 
partition S into 

L elements less than x
E elements equal x
G elements greater than x

2. Recur: sort L and G
3. Conquer: join L, E and G

x

x

L GE

x
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Partition

We partition an input 
sequence as follows:
We remove, in turn, each 

element y from S and 
We insert y into L, E or G,

depending on the result of 
the comparison with the 
pivot x

Each insertion and removal is 
at the beginning or at the 
end of a sequence, and 
hence takes O(1) time

Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)
Input sequence S, position p of pivot 
Output subsequences L, E, G of the 

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

y ← S.remove(S.first())
if y < x

L.addLast(y)
else if y = x

E.addLast(y)
else { y > x }

G.addLast(y)
return L, E, G



Java Implementation

EECS 2011
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In place, deterministic (non-randomized) 
Quicksort

• Choose a pivot deterministically: say the last 
element of the array

• Define partition to be in place



Partitioning

• Linear time partitioning procedure

Partition(A,p,r)
01 x←A[r]
02 i←p-1
03 j←r+1
04 while TRUE
05 repeat j←j-1
06 until A[j] ≤x
07 repeat i←i+1
08 until A[i] ≥x
09 if i<j
10 then exchange A[i]↔A[j]
11 else return j

17 12 6 19 23 8 5 10
i ji j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

≤ X=10 ≤



Quick Sort Algorithm

• Initial call Quicksort(A, 1, length[A])

Quicksort(A,p,r)
01 if p<r
02 then q←Partition(A,p,r)
03 Quicksort(A,p,q)
04 Quicksort(A,q+1,r)



Analysis of Quicksort

• Assume that all input elements are distinct
• The running time depends on the distribution 

of splits



Best Case

• If we are lucky, Partition splits the array 
evenly ( ) 2 ( / 2) ( )T n T n n= + Θ



Using the median as a pivot

• The recurrence in the previous slide works 
out, BUT……

Q: Can we find the median in linear-time?
A: YES! But the algorithm is complex and has 

large constants, and is of limited use in 
practice



Worst Case

• What is the worst case?
• One side of the parition has only one element

1

1
2

( ) (1) ( 1) ( )
( 1) ( )

( )

( )

( )

n

k
n

k

T n T T n n
T n n

k

k

n

=

=

= + − + Θ
= − +Θ

= Θ

= Θ

= Θ

∑

∑



Worst Case (2)



Worst Case (3)

• When does the worst case appear?
– input is sorted 
– input reverse sorted

• Same recurrence for the worst case of 
insertion sort

• However, sorted input yields the best case for 
insertion sort!



Analysis of Quicksort

• Suppose the split is 1/10 : 9/10
( ) ( /10) (9 /10) ( ) ( log )!T n T n T n n n n= + + Θ = Θ



An Average Case Scenario

• Suppose, we alternate 
lucky and unlucky 
cases to get an 
average behavior

( ) 2 ( / 2) ( )  lucky
( ) ( 1) ( )    unlucky

we consequently get
( ) 2( ( / 2 1) ( / 2)) ( )

2 ( / 2 1) ( )
( log )

L n U n n
U n L n n

L n L n n n
L n n

n n

= + Θ
= − + Θ

= − + Θ + Θ
= − + Θ
= Θn

1 n-1

(n-1)/2 (n-1)/2

( )nΘ

(n-1)/2+1 (n-1)/2

n ( )nΘ



An Average Case Scenario (2)

• How can we make sure that we are usually 
lucky?
– Partition around a random element (works well in 

practice)
• Randomized algorithm

– running time is independent of the input ordering
– no specific input triggers worst-case behavior
– the worst-case is only determined by the output of 

the random-number generator



Summary of Comparison Sorts

Algorithm Best 
Case

Worst 
Case

Average
Case

In 
Place

Stable Comments

Selection n2 n2 Yes Yes

Bubble n n2 Yes Yes Must count swaps for linear best case 
running time.

Insertion n n2 Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that 
require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes Yes Usually fastest in practice

But not both!



Next: How fast can we Sort?

We have seen algorithms with worst case 
Θ(n2) and Θ(n log n) times.

Can we improve to O(n)? 

We cannot do better because we have to 
read and write n elements

Lower bounds: a provable minimum worst 
case time for a problem



Comparison-based algorithms

• The algorithm only uses the results of comparisons, 
not values of elements (*).

• Very general – does not assume much about what 
type of data is being sorted.

• However, other kinds of algorithms are possible!
• In this model, it is reasonable to count #comparisons.
• Note that the #comparisons is a lower bound on the 

running time of an algorithm.

(*) If values are used, lower bounds proved in this 
model are not lower bounds on the running time.



Points to note

Crucial observations: We must prove our claim about ANY 
algorithm that only uses comparisons to find the 
minimum. 

Specifically, we made no assumptions about 

1. Nature of algorithm.
2. Order or number of comparisons.
3. Optimality of algorithm
4. Whether the algorithm is reasonable – e.g. it could be a 

very wasteful algorithm, repeating the same 
comparisons.



Lower bounds for Comparison-based 
Sorting

Claim: Any comparison-based sorting algorithm
must have a worst-case rime of Ω(n log n)

Unfortunate facts: 
Lower bounds are usually hard to prove. 
Virtually no known general techniques – must 

try ad hoc methods for each problem.



Lower bounds for comparison-based sorting

• Trivial: Ω(n) – every element must take part in a 
comparison.

• Best possible result – Ω(n log n) comparisons, since 
we already know several O(n log n) sorting algorithms.

• Proof is non-trivial: how do we reason about all possible 
comparison-based sorting algorithms?



The Decision Tree Model

• Assumptions:
– All numbers are distinct (so no use for ai = aj )
– All comparisons have form ai ≤ aj (since ai ≤ aj, ai ≥

aj, ai < aj, ai > aj are equivalent).
• Decision tree model

– Full binary tree
– Ignore control, movement, and all other operations, 

just use comparisons.
– suppose three elements < a1, a2, a3> with instance 

<6,8,5>.



Sorting Lower Bound

Counting Comparisons

Let us just count comparisons then.
Each possible run of the algorithm 

corresponds to a root-to-leaf path in a 
decision tree xi < xj ?

xa < xb ?

xm < xo ? xp < xq ?xe < xf ? xk < xl ?

xc < xd ?



The Decision Tree Model - contd

• Consider Insertion sort again

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key



Example: insertion sort (n=3)

A[2]: A[3] A[1]: A[3]

A[1]: A[2]

A[1]: A[3] A[2]: A[3]

>

>

>>

>

≤

≤

≤

≤

≤

A[1]A[2]A[3]

A[1]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1]

A[2]A[1]A[3]

A[3]A[2]A[1]



The Decision Tree Model

2:3

1:2

2:3

1:3

1:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

≤

≤ ≤

≤

>

>

>

>

>

Internal node i:j indicates comparison between ai and aj.
Leaf node <π(1), π(2), π(3)> indicates ordering aπ(1)≤ aπ(2)≤ aπ(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

≤



Summary

Only consider comparisons
 Each internal node = 1 comparison
 Start at root, make the first comparison 

- if the outcome is ≤ take the LEFT branch
- if the outcome is > - take the RIGHT branch

 Repeat at each internal node

 Each LEAF represents ONE correct ordering



Lower bound for the worst case

• Claim: The decision tree must have at least n! leaves. 
WHY?

• worst case number of comparisons=  the height of the 
decision tree.

• Claim: Any comparison sort in the worst case needs Ω(n 
log n) comparisons.

• Suppose height of a decision tree is h, number of paths 
(i,e,, permutations) is n!. 

• Since a binary tree of height h has at most 2h leaves, 

n! ≤ 2h , so  h ≥ lg (n!) ≥ Ω(n lg n) 



Lower bound: limitations

Q: Can we beat the lower bound for sorting?
A: In general no, but in some special cases YES! 
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