
EECS 201109/09/17 1

Instructor: Suprakash Datta

Office : LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

Note: Some slides in this lecture are adopted from James Elder’ s and
the authors’ slides.

EECS 2011M: Fundamentals of Data
Structures

EECS 201109/09/17 2

1. We can do better than the lower bound if the
algorithm is not comparison-based

2. We can sort using information other than
comparisons between data items if we restrict
the scope of the problem

3. For some restricted scenarios, we can sort in
worse-case linear time

Linear Time Sorting

EECS 201109/09/17 3

1. Suppose all keys come from a finite interval,
say [0,1)

2. We can define buckets for ranges, e.g.
[0,0.1),[0.1,0.2),…,[0.9,1)

3. Insert keys in appropriate bucket
4. If input is random and uniformly distributed,

expected run time is Θ(n).

Bucket Sort

Bucket Sort - Illustration
Given A[1..n]:

Create new table B of length n
Insert A[i] into

Bucket Sort - Pseudocode

(1)Θ

(1)Θ
()nΘ

n×

()nΘ

Expected Running Time

n×

Bucket-Sort and Radix-Sort

6

Bucket Sort – Example

Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

EECS 201109/09/17 7

1. Stable Sort
2. Keys must be numbers -- since they are used

to generate array indices
3. Extension: Set of fixed keys like the set of

names of 50 US states – Sort the keys and
give each key its unique bucket. Insert each
item into the bracket corresponding to its key

4. What if input numbers are NOT uniformly
distributed?

5. What if the distribution is not known a priori?

Bucket Sort – Properties and Extensions

EECS 201109/09/17 8

1. Counting Sort
2. Radix Sort

Like Counting Sort, these are also not
comparison-based

Towards Worst-case Linear Time Sorting

First step: Counting Sort

1. applies when the keys come from a
finite (and preferably small) set, e.g.,
are integers in the range [0…k-1], for
some fixed integer k.

2. We can then create an array V[0…k-1]
and use it to count the number of
elements with each key [0…k-1].

3. Then each input element can be
placed in exactly the right place in the
output array in constant time.

Counting Sort

Input: N records with integer keys from
[0…3].

Output: Stable sorted keys.
Algorithm:

Count frequency of each key value to determine
transition locations

Go through the records in order putting them where
they go.

Input:
Output: 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 3 33

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

Counting Sort

• Assumption: n input numbers are integers in the
range [0,k], k=O(n).

• Idea:
– Determine the number of elements less than

x, for each input x.
– Place x directly in its position.

Counting Sort - pseudocode
Counting-Sort(A,B,k)
• for i←0 to k
• do C[i] ←0
• for j ←1 to length[A]
• do C[A[j]] ←C[A[j]]+1
• // C[i] contains number of elements equal to i.
• for i ←1 to k
• do C[i]=C[i]+C[i-1]
• // C[i] contains number of elements ≤ i.
• for j ←length[A] downto 1
• do B[C[A[j]]] ←A[j]
• C[A[j]] ←C[A[j]]-1

CountingSort

Input:
Output:

Index: 11109876543210 12 131415161718

Value v:
of records with digit v:

of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3210
3395
171450

N records, k different values. Time to count? θ(k)

CountingSort

Input:
Output:
Index: 11109876543210 12 131415161718

Value v:
of records with digit < v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3210
171450

= location of first record with digit v.

0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 33

Counting Sort - analysis
1. for i←0 to k Θ(k)
2. do C[i] ←0 Θ(1)
3. for j ←1 to length[A] Θ(n)
4. do C[A[j]] ←C[A[j]]+1 Θ(1) (Θ(1) Θ(n)= Θ(n))

5. // C[i] contains number of elements equal to i. Θ(0)
6. for i ←1 to k Θ(k)
7. do C[i]=C[i]+C[i-1] Θ(1) (Θ(1) Θ(n)= Θ(n))

8. // C[i] contains number of elements ≤ i. Θ(0)
9. for j ←length[A] downto 1 Θ(n)
10. do B[C[A[j]]] ←A[j] Θ(1) (Θ(1) Θ(n)= Θ(n))
11. C[A[j]] ←C[A[j]]-1 Θ(1) (Θ(1) Θ(n)= Θ(n))

Total cost is Θ(k+n), suppose k=O(n), then total cost is Θ(n).
So, it beats the Ω(n log n) lower bound!

Stability

• Counting sort is stable.

Crucial question: can counting sort be used to
sort large integers efficiently?

Radix Sort
Input:

• An array of N numbers.
• Each number contains d digits.
• Each digit between [0…k-1]

Output:
• Sorted numbers.

Each digit (column) can be sorted (e.g., using
Counting Sort).

Which digit to start from?

RadixSort

344
125
333
134
224
334
143
225
325
243

Sort by which
digit first?

The most
significant.

125
134
143
224
225
243
344
333
334
325

Sort by which
digit Second?

The next most
significant.

125
224
225
325
134
333
334
143
243
344

All meaning in first sort lost.

Radix Sort
1. Start from the least significant digit, sort

2. Sort by the next least significant digit

3. Are the last 2 columns sorted?

4. Generalize: after j iterations, the last j columns
are sorted

5. Loop invariant: Before iteration i, the keys
have been correctly stable-sorted with
respect to the i-1 least-significant digits.

Radix sort

Radix-Sort(A,d)
• for i←1 to d
• do use a stable sort to sort A on digit i

Analysis:
Given n d-digit numbers where each digit takes on

up to k values, Radix-Sort sorts these numbers
correctly in Θ(d(n+k)) time.

Radix sort – example

1019
3075
2225
2231

2231
3075
2225
1019

1019
2225
2231
3075

1019
3075
2225
2231

Sorted!

1019
2231
2225
3075

1019
2225
2231
3075

1019
3075
2231
2225

Not
sorted!

22

Radix sort – example (binary)

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Bucket Sort - Illustration
	Bucket Sort - Pseudocode
	Bucket Sort – Example
	Slide Number 7
	Slide Number 8
	First step: Counting Sort
	Counting Sort
	Counting Sort
	Counting Sort - pseudocode
	CountingSort
	CountingSort
	Counting Sort - analysis
	Stability
	Radix Sort
	RadixSort
	Radix Sort
	Radix sort
	Radix sort – example
	Radix sort – example (binary)

