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Graph Search Algorithms

Graphs: Exploration and Searching

Method to explore many key properties of a graph

Nodes that are reachable from a specific node v

Detection of cycles

Extraction of strongly connected components

Topological sorts

Find a path with the minimum number of edges between two
given vertices

Note: Some slides in this presentation have been adapted from the
author’s and Prof Elder’s slides.
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Graph Search Algorithms

Graph Search Algorithms

Depth-first Search (DFS)

Breadth-first Search (BFS)

S. Datta (York Univ.) EECS 2011 W18 3 / 32



DFS

Depth-first Search

A DFS traversal of a graph G

Visits all the vertices and edges of G

Determines whether G is connected

Computes the connected components of G

Computes a spanning forest of G

Find a cycle in the graph
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DFS

Depth-first Search - 2

The DFS algorithm is similar to a classic strategy for exploring a maze

We mark each intersection, corner and dead end (vertex) visited

We mark each corridor (edge) traversed

We keep track of the path back to the entrance (start vertex) by
means of a rope (recursion stack)
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DFS

Depth-first Search - Algorithm
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DFS

Depth-first Search - Java Implementation
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DFS

An Augmented DFS

When a vertex discovered, explore every incident edge from it. Keep
track of progress by colouring vertices:

Black: undiscovered vertices

Red: discovered, but not finished (still exploring from it)

Gray: finished (Discovered everything reachable from it).
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DFS

Depth-first Search - Example
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DFS

Depth-first Search - Example
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DFS

Augmented DFS - Algorithm
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DFS

DFS-Visit - Algorithm

Q: How are the edges classified?

Q: What do back edges signify?

Notice the implicit stack in the code.
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DFS

DFS: Properties

Property 1:
DFS-Visit(v) visits all the vertices and edges in the connected
component of v

Property 2:
The discovery edges labeled by DFS(v) form a spanning tree of
the connected component of v

S. Datta (York Univ.) EECS 2011 W18 13 / 32



DFS

DFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice

once as UNEXPLORED once as DISCOVERY or BACK

Method DFS-Visit is called once for each vertex

DFS runs in θ(n + m) time provided the graph is represented by
the adjacency list structure:
Recall that

∑
v deg(v) = 2m
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DFS

DFS on Directed Graphs

Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is
a tree edge if v was first discovered by exploring edge (u, v)

Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree

Forward edges are non-tree edges (u, v) connecting a vertex u to
a descendant v in a depth-first tree

Cross edges are all other edges. They can go between vertices in
the same depth-first tree, as long as one vertex is not an
ancestor of the other.

Classifying edges can help to identify properties of the graph,
e.g., a graph is acyclic iff DFS yields no back edges
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DFS

DFS on Undirected Graphs

In a depth-first search of a connected undirected graph, every
edge is either a tree edge or a back edge
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DFS

DFS: Another Extension

In addition to, or instead of labeling vertices with colours, they
can be labeled with discovery and finishing times.

Time is an integer that is incremented whenever a vertex
changes state

from unexplored to discovered
from discovered to finished

These discovery and finishing times can then be used to solve
other graph problems (e.g., computing strongly-connected
components)

Two timestamps put on every vertex:

discovery time d(v) ≥ 1
finish time 1 < f (v) ≤ 2n
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DFS

Modified DFS-Visit - Algorithm

DFS does not change except the global variable time is initialized to
0 in it
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DFS

Modified DFS - Advantages

Time stamps are useful for many purposes

E.g., Topological Sort – sorting vertices of a directed acyclic
graph
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DFS DFS Applications

DFS Application: Topological Sort

call DFS(G) to compute finishing times f [v ] for each vertex v

return the list of vertices sorted in decreasing order of f [v ]
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DFS DFS Applications

DFS Application: Path Finding

We can adapt the DFS algorithm to find a path between vertices
u and z

We call DFS(G , u) with u as the start vertex

We use a stack S to keep track of the path between the start
vertex and the current vertex

As soon as destination vertex z is encountered, we return the
path as the contents of the stack

Q: What is the color of the nodes on the path?
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DFS DFS Applications

DFS Application: Cycle Finding

We can adapt the DFS algorithm to find a simple cycle

We use a stack S to keep track of the path between the start
vertex and the current vertex

As soon as a back edge (v ,w) is encountered, we return the
cycle as the portion of the stack from the top to vertex w
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BFS

Breadth First Search

Another general technique for traversing a graph

A BFS traversal of a graph G

Visits all the vertices and edges of G
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G

BFS on a graph with |V | vertices and |E | edges takes
θ(|V |+ |E |) time

BFS can be further extended to solve other graph problems

Find and report a path with the minimum number of edges
between two given vertices
Cycle detection
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BFS

Breadth First Search - 2

Notice that in BFS exploration takes place on a level or
wavefront consisting of nodes that are all the same distance
from the source s

We can label these successive wavefronts by their distance:
L0, L1, . . .

Notice that a queue is used instead of a stack
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BFS

Breadth First Search - 3

Input: directed or undirected graph G = (V ,E ), source vertex
s ∈ V

Output: for all v ∈ V

d [v ], the shortest distance from s to v
π[v ] = u, such that (u, v) is the last edge on the shortest
distance from s to v

Idea: send out search ‘wave’ from s

Keep track of progress by colouring vertices:

Undiscovered vertices are coloured black
Just discovered vertices (on the wavefront) are coloured red
Previously discovered vertices (behind wavefront) are coloured
grey
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BFS

Breadth First Search - Algorithm
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BFS

Breadth First Search - Example
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BFS

Breadth First Search - Example
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BFS

Breadth First Search - Example
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BFS

BFS: Properties

Notation: Gs : connected component containing s

Property 1: BFS(G , s) visits all the vertices and edges of Gs

Property 2: The discovery edges labeled by BFS(G , s) form a
spanning tree Ts of Gs

Property 3: For each vertex v in Li
The unique path from s to v on Ts has i edges
Every path from s to v in Gs has at least i edges
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BFS

BFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled three times

once as BLACK (undiscovered)
once as RED (discovered, on queue)
once as GRAY (finished)

Each edge is considered twice (for an undirected graph)

Each vertex is placed on the queue once

Thus BFS runs in θ(|V |+ |E |) time provided the graph is
represented by an adjacency list structure
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BFS

BFS Application: Shortest Unweighted Paths

Goal: To recover the shortest paths from a source node s to all
other reachable nodes v in a graph

The length of each path and the paths themselves are returned

Notes:

There are an exponential number of possible paths

Analogous to level order traversal for trees

This problem is harder for general graphs than trees because of
cycles!
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