EECS 2011 M:
Fundamentals of Data Structures

Suprakash Datta
Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/2011M
Also on Moodle

S. Datta (York Univ.) EECS 2011 W18 1/32

http://www.eecs.yorku.ca/course/2011M

Graph Search Algorithms

Graphs: Exploration and Searching

Method to explore many key properties of a graph
@ Nodes that are reachable from a specific node v

@ Detection of cycles
@ Extraction of strongly connected components
@ Topological sorts

@ Find a path with the minimum number of edges between two
given vertices

Note: Some slides in this presentation have been adapted from the
author’s and Prof Elder’s slides.

S. Datta (York Univ.) EECS 2011 W18 2/32

Graph Search Algorithms

Graph Search Algorithms

@ Depth-first Search (DFS)

@ Breadth-first Search (BFS)

S. Datta (York Univ.) EECS 2011 W18

3/32

DFS

Depth-first Search

A DFS traversal of a graph G

@ Visits all the vertices and edges of G

Determines whether G is connected

Computes the connected components of G

Computes a spanning forest of G

Find a cycle in the graph

S. Datta (York Univ.) EECS 2011 W18

4/32

DFS

Depth-first Search - 2

The DFS algorithm is similar to a classic strategy for exploring a maze

@ We mark each intersection, corner and dead end (vertex) visited

@ We mark each corridor (edge) traversed

@ We keep track of the path back to the entrance (start vertex) by
means of a rope (recursion stack)

|_| —

o

S. Datta (York Univ.) EECS 2011 W18 5/32

DFS

Depth-first Search - Algorithm

Algorithm DFS(G, u):
Input: A graph G and a vertex u of G
Ouiput: A collection of vertices reachable from u, with their discovery edges
Mark vertex u as visited.
for each of «’s outgoing edges. e = (u,v) do
if vertex v has not been visited then
Record edge e as the discovery edge for vertex v.
Recursively call DFS(G, v).

S. Datta (York Univ.) EECS 2011 W18 6/32

DFS

Depth-first Search - Java Implementation

1 /%% Performs depth-first search of Graph g starting at Vertex u. %/
2 public static <V,E> void DFS(Graph<V,E> g, Vertex<V> u,
3 Set<Vertex<V>> known, Map<Vertex<V> Edge<E>> forest) {

4 known.add(u); // u has been discovered

5 for (Edge<E>> e : g.outgoingEdges(u)) { // for every outgoing edge from u

6 Vertex<V> v = g.opposite(u, €);

7 if (lknown.contains(v)) {

8 forest.put(v, €); // e is the tree edge that discovered v
9 DFS(g, v, known, forest); // recursively explore from v

10 1

11 }

12}

S. Datta (York Univ.) EECS 2011 W18 7/32

DFS

An Augmented DFS

When a vertex discovered, explore every incident edge from it. Keep
track of progress by colouring vertices:

@ Black: undiscovered vertices
@ Red: discovered, but not finished (still exploring from it)

@ Gray: finished (Discovered everything reachable from it).

S. Datta (York Univ.) EECS 2011 W18 8/32

DFS

Depth-first Search - Example

0 unexplored

0 being explored
0 finished
unexplored edge
——— discovery edge

- — — » back edge

S. Datta (York Univ.) EECS 2011 W18 9/32

DFS

Depth-first Search - Example

S. Datta (York Univ.) EECS 2011 W18 10 / 32

DFS

Augmented DFS - Algorithm

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u eV[G]
colorfu] = BLACK //initialize vertex
for each vertex u eV[G]
if coloru] = BLACK //as yet unexplored
DFS-Visit(u)

S. Datta (York Univ.) EECS 2011 W18 11/ 32

DFS-Visit - Algorithm

DFS-Visit (u)
Precondition: vertex v is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v € Adj[u] //explore edge (u,v)
if color{v] = BLACK
DFS-Visit(v)
colour[u] «<- GRAY

Q: How are the edges classified?
Q: What do back edges signify?

Notice the implicit stack in the code.

S. Datta (York Univ.) EECS 2011 W18

12 /32

DFS

DFS: Properties

@ Property 1:
DFS-Visit(v) visits all the vertices and edges in the connected
component of v

@ Property 2:
The discovery edges labeled by DFS(v) form a spanning tree of
the connected component of v

&

S. Datta (York Univ.) EECS 2011 W18 13 / 32

DFS

DFS: Analysis

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice

e once as UNEXPLORED
e once as VISITED

Each edge is labeled twice
e once as UNEXPLORED once as DISCOVERY or BACK
@ Method DFS-Visit is called once for each vertex

DFS runs in 8(n + m) time provided the graph is represented by
the adjacency list structure:
Recall that) deg(v) =2m

S. Datta (York Univ.) EECS 2011 W18 14 / 32

DFS

DFS on Directed Graphs

@ Tree edges are edges in the depth-first forest G,. Edge (u, v) is
a tree edge if v was first discovered by exploring edge (u, v)

@ Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree

@ Forward edges are non-tree edges (u, v) connecting a vertex u to
a descendant v in a depth-first tree

@ Cross edges are all other edges. They can go between vertices in
the same depth-first tree, as long as one vertex is not an
ancestor of the other.

e Classifying edges can help to identify properties of the graph,
e.g., a graph is acyclic iff DFS yields no back edges

S. Datta (York Univ.) EECS 2011 W18 15 / 32

DFS

DFS on Undirected Graphs

@ In a depth-first search of a connected undirected graph, every
edge is either a tree edge or a back edge

S. Datta (York Univ.) EECS 2011 W18 16 / 32

DFS

DFS: Another Extension

@ In addition to, or instead of labeling vertices with colours, they
can be labeled with discovery and finishing times.

@ Time is an integer that is incremented whenever a vertex
changes state

e from unexplored to discovered
e from discovered to finished

@ These discovery and finishing times can then be used to solve
other graph problems (e.g., computing strongly-connected
components)

@ Two timestamps put on every vertex:

e discovery time d(v) >1
e finish time 1 < f(v) <2n

S. Datta (York Univ.) EECS 2011 W18 17 / 32

DFS

Modified DFS-Visit - Algorithm

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
time « time +1
d[u] « time
for each v € Adj[u] //explore edge (u,v)
if color[v] = BLACK
DFS-Visit(v)
colour[u] < GRAY
time « time +1
flu] < time
DFS does not change except the global variable time is initialized to
Oinit

S. Datta (York Univ.) EECS 2011 W18 18 / 32

DFS

Modified DFS - Advantages

@ Time stamps are useful for many purposes

e E.g., Topological Sort — sorting vertices of a directed acyclic
graph

S. Datta (York Univ.) EECS 2011 W18 19 / 32

DFS DFS Applications

DES Application: Topological Sort

11/16

(Shirt->{belt)
17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

e call DFS(G) to compute finishing times f[v] for each vertex v

@ return the list of vertices sorted in decreasing order of f[v]

S. Datta (York Univ.) EECS 2011 W18 20 / 32

DFS DFS Applications

DES Application: Path Finding

@ We can adapt the DFS algorithm to find a path between vertices
uand z

@ We call DFS(G, u) with u as the start vertex

@ We use a stack S to keep track of the path between the start
vertex and the current vertex

@ As soon as destination vertex z is encountered, we return the
path as the contents of the stack

@ Q: What is the color of the nodes on the path?

S. Datta (York Univ.) EECS 2011 W18 21/ 32

DFS DFS Applications
DFS Application: Cycle Finding
@ We can adapt the DFS algorithm to find a simple cycle

@ We use a stack S to keep track of the path between the start
vertex and the current vertex

@ As soon as a back edge (v, w) is encountered, we return the
cycle as the portion of the stack from the top to vertex w

S. Datta (York Univ.) EECS 2011 W18 22 / 32

BFS

Breadth First Search

Another general technique for traversing a graph

@ A BFS traversal of a graph G

Visits all the vertices and edges of G
Determines whether G is connected
Computes the connected components of G
Computes a spanning forest of G

@ BFS on a graph with | V| vertices and |E| edges takes
O(|V|+ |E]) time

@ BFS can be further extended to solve other graph problems

e Find and report a path with the minimum number of edges
between two given vertices
e Cycle detection

S. Datta (York Univ.) EECS 2011 W18 23/ 32

BFS

Breadth First Search - 2

@ Notice that in BFS exploration takes place on a level or
wavefront consisting of nodes that are all the same distance
from the source s

@ We can label these successive wavefronts by their distance:
Lo, Ly,...

@ Notice that a queue is used instead of a stack

S. Datta (York Univ.) EECS 2011 W18

24 / 32

BFS

Breadth First Search - 3

@ Input: directed or undirected graph G = (V/, E), source vertex
seV

@ Output: forall ve V

e d[v], the shortest distance from s to v
e 7[v] = u, such that (u, v) is the last edge on the shortest
distance from s to v

@ ldea: send out search ‘wave’ from s

@ Keep track of progress by colouring vertices:

e Undiscovered vertices are coloured black
o Just discovered vertices (on the wavefront) are coloured red
e Previously discovered vertices (behind wavefront) are coloured

grey

S. Datta (York Univ.) EECS 2011 W18 25 / 32

BFS

Breadth First Search - Algorithm

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u e V[G]
colorffu] « BLACK /finitialize vertex
colour[s] « RED
Q.enqueue(s)
while Q= &
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,v)
if color{v] = BLACK
colour[v] «+ RED
Q.enqueue(v)
colour[u] « GRAY

S. Datta (York Univ.) EECS 2011 W18 26 / 32

BFS

Breadth First Search - Example

o undiscovered

0 discovered (on Queue)

0 finished

unexplored edge

—— discovery edge

— — = » Cross edge

S. Datta (York Univ.) EECS 2011 W18 27 / 32

BFS

Breadth First Search - Example

S. Datta (York Univ.) EECS 2011 W18 28 / 32

BFS

Breadth First Search - Example

S. Datta (York Univ.) EECS 2011 W18 29 / 32

BFS

BFS: Properties

Notation: G: connected component containing s

@ Property 1. BFS(G, s) visits all the vertices and edges of G

@ Property 2: The discovery edges labeled by BFS(G, s) form a
spanning tree T, of G;

@ Property 3: For each vertex v in L;

e The unique path from s to v on T has i edges
e Every path from s to v in G has at least / edges

S. Datta (York Univ.) EECS 2011 W18 30 / 32

BFS

BFS: Analysis

@ Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled three times

e once as BLACK (undiscovered)
e once as RED (discovered, on queue)
e once as GRAY (finished)

@ Each edge is considered twice (for an undirected graph)

@ Each vertex is placed on the queue once

Thus BFS runs in (|V| + |E|) time provided the graph is
represented by an adjacency list structure

S. Datta (York Univ.) EECS 2011 W18 31/ 32

BFS

BFS Application: Shortest Unweighted Paths

@ Goal: To recover the shortest paths from a source node s to all
other reachable nodes v in a graph

e The length of each path and the paths themselves are returned
e Notes:
e There are an exponential number of possible paths

e Analogous to level order traversal for trees

o This problem is harder for general graphs than trees because of
cycles!

S. Datta (York Univ.) EECS 2011 W18 32 /32

	Graph Search Algorithms
	DFS
	DFS Applications

	BFS

