EECS 1028 M: Discrete Mathematics for Engineers

Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028
Also on Moodle

Why Study Logic?

A formal mathematical "language" for precise reasoning.

- Start with propositions.
- Add other constructs like negation, conjunction, disjunction, implication etc.
- All of these are based on ideas we use daily to reason about things.
- Later: A more expressive language Predicate logic

Propositions

- Declarative sentence.
- Must be either True or False.
- Examples of propositions:
 - York University is in Toronto
 - York University is in downtown Toronto
 - All students at York are Computer Science majors
- Examples of statements that are not propositions:
 - Do you like this class?
 - There are *n* students in this class.

Propositions - 2

- Truth value: True or False
- Variables: p, q, r, s, ...
- Negation: $\neg p$ (In English, "not p")
- Truth tables enumerative definition of propositions

р	$\neg p$
Т	F
F	Т

Negating Propositions

- $\neg p$: Literally, "it is not the case that p is true"
 - p: "it rained more than 20 inches in Toronto last month"

- q: "John has many iPads"
- Page 12, Q10 (a) r: "the election is decided"

<u>Practice:</u> Questions 1-7 page 12.

Combining Propositions

Purpose: express more complex statements

- Conjunction, Disjunction
- Exclusive OR (XOR)
- Conditionals, Biconditionals

Logical Equivalence

Conjunctions and Disjunctions

Purpose: combine statements using or and and

- Conjunction: $p \wedge q$ ["p and q"]
- Disjunction: $p \lor q$ ["p or q"]

	р	q	$p \wedge q$	$p \lor q$
	F	F	F	F
•	F	Т	F	Т
	Т	F	F	Т
	Т	Т	Т	Т

Examples

Q11, page 13

p: It is below freezing

q: It is snowing

- It is below freezing and snowing
- It is below freezing but not snowing

• It is either snowing or below freezing (or both)

Exclusive OR

Notation: $p \oplus q$

- TRUE if p and q have different truth values, FALSE otherwise
- Colloquially, we often use OR ambiguously
 - "an entree comes with soup or salad" implies XOR, but
 - "students can take MATH XXXX if they have taken MATH 2320 or MATH 1019" usually means the normal OR (so a student who has taken both is still eligible for MATH XXXX).

Conditionals

```
Notation: p \rightarrow q ["if p then q"]
p: hypothesis, q: conclusion
Examples:
```

- "If you turn in a homework late, it will not be graded"
- If you get 100% in this course, you will get an A+"

A conditional is a proposition

- Tricky question: Is $p \rightarrow q$ TRUE if p is FALSE?
- Think of "If you get 100% in this course, you will get an A+" as a promise is the promise violated if someone gets 50% and does not receive an A+?

Q: How does this compare to a if (...) then ... statement in programming?

Conditionals - Truth Table

 $p \rightarrow q$: When is it False? Q17, pg 14:

- If 1+1=3 then 2+2=4
- If 1+1=3 then 2+2=5
- If 1+1=2 then 2+2=4
- If 1+1=2 then 2+2=5

FALSE

р	q	p o q	$\neg p \lor q$
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	Т	Т

English Statements to Conditionals (pg 6)

- $p \rightarrow q$ may be expressed as
 - A sufficient condition for q is p
 - q whenever p
 - q unless $\neg p$
 - Difficult: A necessary condition for p is q
 if p happened, q must have happened, i.e., p cannot happen if we do not have q.
 - p only if q: not the same as p if q! Same as the previous point, if p happened, q must have happened

Logical Equivalence

 $p \to q$ and $\neg p \lor q$ have the truth table. Does that make them equal? equivalent?

• $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent

• Truth tables are the simplest way to prove such facts.

• We will learn other ways later.

Biconditionals

Notation: $p \leftrightarrow q$ ["if and only if"]

- True if p, q have same truth values, false otherwise.
- Can also be defined as $(p \leftarrow q) \land (q \leftarrow p)$
- Example: Q16(c) "1+1=3 if and only if monkeys can fly".
- Q: How is this related to XOR?

р	q	$p \leftrightarrow q$	$p \oplus q$
F	F	Т	F
F	Т	F	Т
Т	F	F	Т
Т	Т	Т	F

Contrapositive

Contrapositive of p o q is $\neg q o \neg p$

- E.g. The contrapositive of "If you get 100% in this course, you will get an A+" is "If you do not get an A+ in this course, you did not get 100%".
- Any conditional and its contrapositive are logically equivalent (have the same truth table).

р	q	p o q	$\neg q$	$\neg p$	eg q o eg p
F	F	Т	Т	Т	Т
F	Т	Т	F	Т	Т
Т	F	F	Т	F	F
Т	Т	Т	F	F	Т

Proof using Contrapositive

Prove: If x^2 is even, then x is even

• Proof 1: Using contradiction, seen before.

• Proof 2:

 $x^2 = 2a$ for some integer a. Since 2 is prime, 2 must divide x. (Uses knowledge of primes)

• Proof 3:

if x is not even, then x is odd. Therefore x^2 is odd. This is the contrapositive of the original assertion.

(Uses only facts about odd and even numbers)

Converse and Inverse

Converse of
$$p \to q$$
 is $q \to p$
Converse of $p \to q$ is $\neg p \to \neg q$

- Converse examples:
 - "If you get 100% in this course, you will get an A+", converse "If you get an A+ in this course, you scored 100%".
 - "If you won the lottery, you are rich", converse "If you are rich, you (must have) won the lottery".
- Neither is logically equivalent to the original conditional

р	q	p o q	q o p	eg p o eg q
F	F	T	T	T
F	Т	Т	F	F
Т	F	F	Т	Т
T	Т	Т	Т	Т

Tautology and Logical Equivalence

Tautology: A (compound) proposition that is always TRUE, e.g. $q \lor \neg q$

• Logical equivalence redefined: p, q are logical equivalences (Symbolically $p \equiv q$) if $p \leftrightarrow q$ is a tautology.

• Intuition: $p \leftrightarrow q$ is true precisely when p, q have the same truth values.

Compound Propositions: Precedence

Example: $p \land q \lor r$: Could be interpreted as $(p \land q) \lor r$ or $p \land (q \lor r)$

• precedence order: \neg , \land , \lor , \rightarrow , \leftrightarrow (Overruled by brackets)

 We use this order to compute truth values of compound propositions.

Translating English Sentences to Propositional Logic statements

Pages 14-15:

- I will remember to send you the address only if you send me an email message
- The beach erodes whenever there is a storm
- John will go swimming unless the water is too cold
- Getting elected follows from knowing the right people.

Readings and Notes

- Read pages 1-12.
- Think about the notion of truth tables.

• Master the rationale behind the definition of conditionals.

 Practice translating English sentences to propositional logic statements.

Manipulating Propositions

- Compound propositions can be simplified by using simple rules.
 Read page 25 - 28.
- Some are obvious, e.g. Identity, Domination, Idempotence, Negation, Double negation, Commutativity, Associativity
- Less obvious: Distributive, De Morgans laws, Absorption

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \vee \neg p \equiv \mathbf{T}$	Negation laws

Distributive Laws

- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ Intuition (not a proof!) - For the LHS to be true: p must be true and q or r must be true. This is the same as saying p and q must be true or p and r must be true.
- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ Intuition (less obvious) - For the LHS to be true: p must be true or both q and r must be true. This is the same as saying p or q must be true and p or r must be true.

Proof: use truth tables.

De Morgan's Laws

• $\neg(q \lor r) \equiv \neg q \land \neg r$ Intuition - For the LHS to be true: neither q nor r can be true. This is the same as saying q and r must both be false.

• $\neg(q \land r) \equiv \neg q \lor \neg r$ Intuition - For the LHS to be true: $q \land r$ must be false. This is the same as saying that q or r must be false.

Proof: use truth tables.

Negating Conditionals

The negation of p o q is NOT $\neg p o \neg q$ or any other conditional

• Easiest to negate the logically equivalent form of $p \to q$, viz., $\neg p \lor q$. So $\neg (p \to q) \equiv \neg (\neg p \lor q) \equiv p \land \neg q$

• Relate to the truth table of $p \rightarrow q$

p	q	p o q	$\lnot (p ightarrow q)$	$p \wedge \neg q$
F	F	T	F	F
F	Т	Т	F	F
Т	F	F	Т	Т
T	Т	T	F	F

Using the laws

Q: Is $p \to (p \to q)$ a tautology?

• Can use truth tables

p	q	p o q	p o (p o q)
F	F	Т	Т
F	Т	Т	Т
Т	F	F	F
Т	Т	Т	Т

• Can write a compound proposition and simplify:

$$p o (p o q) \equiv \neg p \lor (\neg p \lor q)$$

 $\equiv \neg p \lor \neg p \lor q$
 $\equiv \neg p \lor q$

This is False when p is True and q is False