EECS 1028 M: Discrete Mathematics for Engineers

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle

Predicate Logic?

A predicate is a proposition that is a function of one or more variables E.g.:For an integer x, Even(x) : x is an even number. So Even(1) is false, Even(2) is true, and so on.

Examples of predicates:

- Domain ASCII characters IsAlpha(x) : TRUE iff x is an alphabetical character.
- Domain floating point numbers IsInt(x): TRUE iff x is an integer.
- Domain integers: Prime(x) TRUE if x is prime, FALSE otherwise.

The domain of the variable(s) must ALWAYS be specified

Predicates

- Ways of defining predicates: Domain ${\mathbb R}$
 - Explicit: *Positive*(x) is True iff x is positive
 - Implicit: x > 0
- Recall: Positive(2), Positive(-3) are predicates, but Positive(2/0), Positive(x) is not. Q:ls Positive(x²) a predicate?
- The purpose of Predicate Logic is to make general statements like "all birds can fly". Need some more constructs to make such statements

Quantifiers

describes the values of a variable that make the predicate true.

- Existential quantifier: ∃xP(x) "P(x) is true for some x in the domain" or "there exists x such that P(x) is TRUE".
- Universal quantifier: ∀xP(x) "P(x) is true for all x in the domain"
- Either is meaningless if the domain is not known/specified.
- Examples (domain \mathbb{R} , uses implicit predicates):
 - $\forall x(x^2 \ge 0)$
 - $\exists x(x > 1)$
 - Quantifiers with restricted domain $(\forall x > 1)(x^2 > x)$

Using Quantifiers

Domain integers:

• The cube of all negative integers is negative. $\forall x(x < 0) \rightarrow (x^3 < 0)$

• Expressing sums :

$$\forall n\left(\sum_{i=1}^n i = \frac{n(n+1)}{2}\right)$$

Scope of Quantifiers

 ∃∀ have higher precedence than operators from Propositional Logic; so ∀xP(x) ∨ Q(x) is not logically equivalent to ∀x(P(x) ∨ Q(x))

• $\exists x(P(x) \land Q(x)) \lor (\forall xR(x))$ Say P(x) : x is odd, Q(x) : x is divisible by 3, $R(x) : (x = 0) \lor (2x > x)$

Conditionals

Defined similarly as before. Examples:

- Domain: set of all birds. Parrots(x) is a predicate that is true iff x is a parrot. Fly(x) is a predicate that is true iff x can fly. All parrots can fly: (∀x)Parrot(x) → Fly(x)
- Definition of injective functions: $f : A \to B$, $(\forall x_1)(\forall x_2)x_1 \neq x_2 \to f(x_1) \neq f(x_2)$.
- Expressing "There are at exactly 2 real square roots of any natural number n, namely √n, -√n." Define the predicate Sqrt(a, b) : "b is a square root of a". Then the statement is (Domain of n is N, y₁, y₂, z is R) ∀n∃y₁∃y₂Sqrt(n, y₁) ∧ Sqrt(n, y₂) ∧ (y₁ ≠ y₂) ∧(∀z)Sqrt(n, z) → (z = y₁) ∨ (z = y₂)

When to use Conditionals

- Suppose the domain is the set of all birds.
 "All parrots can fly": (∀x)Parrot(x) → Fly(x) is correct; (∀x)Parrot(x) ∧ Fly(x) is incorrect
- More tricky: Domain: all York students. CySec(x) is a predicate that is true iff x is a Cybersecurity major. Takes1019(x) is a predicate that is true iff x takes EECS 1019.
 "Some Cybersecurity major at York takes EECS 1019": ∃xCySec(x) → Takes1019(x) ? ∃xCySec(x) ∧ Takes1019(x) ?
- Related confusing usage: $(\forall x \in S)P(x)$ – really means $(\forall x)x \in S \rightarrow P(x)$ $(\exists x \in S)P(x)$ – really means $(\exists x)x \in S \land P(x)$

Mathematical Properties Stated using Conditionals

- A function is surjective. Consider $f : A \to B$. $(\forall x)x \in B \to (\exists y)(y \in A) \land (f(y) = x)$
- A set S has a maximum (largest element). Let the domain be S. $(\exists y)(\forall x)x \leq y$
- A set S ⊆ N is finite. We need to use the following property of the natural numbers: a subset S is finite iff it has a maximum. Let the domain be S. (∃y)(∀x)x ≤ y
- A set $S \subseteq \mathbb{N}$ is infinite. Negate the above (the domain is S): $(\forall y)(\exists x)x > y$

Logical Equivalence

• Logical Equivalence: $P \equiv Q$ iff they have same truth value no matter which domain is used and no matter which predicates are assigned to predicate variables

Negating Predicate Logic Statements

Examples:

- "There is no student who can ..."
- "Not all professors are bad"
- "There is no Toronto Raptor that can dunk like Vince Carter"

Rules:

•
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
 Why?
• $\neg \exists x P(x) \equiv \forall x \neg P(x)$ Why?

Careful: The negation of "Every Canadian loves Hockey" is NOT "No Canadian loves Hockey"!

Many, many students make this mistake!

Nested Quantifiers

Allows simultaneous quantification of many variables E.g. domain \mathbb{Z} ,

- $\exists x \exists y \exists z (x^2 + y^2 = z^2)$ (Pythagorean triples)
- ∀n∃x∃y∃z(xⁿ + yⁿ = zⁿ) (Fermat's Last Theorem implies this is false)

Domain \mathbb{R} :

- $\forall x \forall y \exists z (x < z < y) \lor (y < z < x)$ Is this true?
- $\forall x \forall y \exists z (x = y) \lor (x < z < y) \lor (y < z < x)$
- $\forall x \forall y \exists z (x \neq y) \rightarrow ((x < z < y) \lor (y < z < x))$

Nested Quantifiers - Similarities with loops

Analogy: An inner quantified variable (inner loop limit) can depend on the outer quantified variable (outer loop index)

- E.g. in $\forall x \exists y(x + y = 0)$ we chose y = -x, so for different x we need different y to satisfy the statement.
- ∀p∃jAccept(p,j) (p, j have different domains) does NOT say that there is a j that will accept all p.

CAUTION: In general, order MATTERS

- $\forall x \exists y (x < y)$: "there is no maximum integer"
- $\exists y \forall x (x < y)$: "there is a maximum integer"

Negation of Nested Quantifiers

Use the same rule as before carefully.

•
$$\neg \exists x \forall y (x + y = 0)$$
:
 $\neg \exists x \forall y (x + y = 0) \equiv \forall x \neg \forall y (x + y = 0)$
 $\equiv \forall x \exists y \neg (x + y = 0)$
 $\equiv \forall x \exists y (x + y \neq 0)$

•
$$\neg \forall x \exists y (x < y)$$

$$\neg \forall x \exists y (x < y) \equiv \exists x \neg \exists y (x < y)$$
$$\equiv \exists x \forall y \neg (x < y)$$
$$\equiv \exists x \forall y (x \ge y)$$

Exercises

Check that

- $\forall x \exists y(x + y = 0)$ is not true over the positive integers.
- $\exists x \forall y (x + y = 0)$ is not true over the integers.
- $\forall x \neq 0 \exists y (y = 1/x)$ is true over the real numbers.

Read 1.4-1.5. Practice: Q2,8,16,30 (pg 65-67)

Proofs vs Counterexamples

To prove quantified statements of the form

- ∀xP(x): an example (or 10) x for which P(x) is true is/are NOT enough; a proof is needed
- $\exists x P(x)$: an example x for which P(x) is true is enough.

To DISPROVE quantified statements of the form

- ∀xP(x): a COUNTERexample x for which P(x) is false is enough
- ∃xP(x): an example x for which P(x) is false is NOT enough; a proof is needed

Intuition:

Disproving $(\forall x)P(x)$ means proving $\neg(\forall x)P(x) \equiv (\exists x)\neg P(x)$

Inference in Predicate Logic

Most rules are very intuitive

- Universal instantiation If ∀xP(x) is true, we infer that P(a) is true for any given a
- Universal Modus Ponens: ∀xP(x) → Q(x) and P(a) imply Q(a) Example: If x is odd then x² is odd. a is odd. So a² is odd.
- Many other rules, see page 76.
 - Again, understanding the rules is crucial, memorizing is not.
 - You should be able to see that the rules make sense and correspond to our intuition about formal reasoning.

Inference Rules

TABLE 2 Rules of Inference for Quantified Statements.	
Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
$\frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization

Commonly used technique: Universal generalization

Examples

• Prove: If x is even, x + 2 is even

Prove: If x² is even, x is even [Note that the problem is to prove an implication.] Proof: if x is not even, x is odd. Therefore x² is odd. This is the contrapositive of the original assertion.

Aside: Inference and Planning

• The steps in an inference are useful for planning an action.

- Example: your professor has assigned reading from an out-of-print book. How do you do it?
- Example 2: you are participating in the television show "Amazing race". How do you play?
- The steps in an inference are useful for proving assertions from axioms and facts.
 - Q: Why is it important for computers to prove theorems?
 - Proving program-correctness
 - Hardware design
 - Data mining
 - Many more

Aside: Inference and Planning - 2

• Sometimes the steps of an inference (proof) are useful. E.g. on Amazon book recommendations are made.

• You can ask why they recommended a certain book to you (reasoning).