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Counting

Elementary Counting

Ch 6, Sec 1, 3, 4

Many Applications:

How many factors does an integer have?

How many case-sensitive alphanumeric passwords are there of
length k?

How many binary functions with n binary inputs are there?

Computing probabilities

Ch 6.2, Pigeonhole Principle was covered earlier
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Counting The Product Rule

The Product Rule

If 2 independent subtasks can be done in m, n ways (resp.) then the
task can be done in mn ways. E.g.,

If I have 2 keyboard players and 3 percussionists, I can choose a
keyboard-percussion duo in 6 ways.

Q: How many 2 digit numbers are there?
9 choices for the first digit, 10 choices for the second

W: How many k character alphanumeric passwords are there?
62 choices for each of k positions
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Counting The Product Rule

Counting functions

Boolean output:

One boolean input: 22 functions

One unsigned integer (0...MAXINT − 1) input:
2MAXINT functions
Caveat: NOT MAXINT 2

n boolean inputs: 22n functions

Integer output:

One integer input: MAXINTMAXINT functions
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Counting The Product Rule

Counting Binary Strings

What is the number of binary strings of length n?

each position can be 0 or 1 (2 choices)

each position represents an independent choice

Using the product rule, the number of strings is 2n
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Counting The Product Rule

Counting using Bijections

If we can find a bijection f : A→ B , then |A| = |B |
Claim: there is a bijection between the set of binary strings of length
n and the power set of a set with n elements
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Counting The Product Rule

Cardinality of Power Sets

What is the number of subsets of a set of n elements?

Proof: From the previous diagram,

Each subset corresponds to a unique binary indicator string of
length n

Each binary string of length n corresponds to a unique subset

Thus the map is a bijection

Therefore, each set has the same cardinality, 2n
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Counting The Product Rule

Counting Number of Factors

Special Case: How many factors of 2n are there?

Wrong argument: each 2 may or may not be chosen

Correct argument: we can take 0, 1, .., n of the 2’s. Therefore
there are n + 1 factors (including 1 and 2n itself).

S. Datta (York Univ.) EECS 1028 W 18 8 / 37



Counting The Product Rule

Counting Number of Factors

General Case: How many factors of m = pa11 pa22 . . . paKK are there?

Claim: the number of factors (including 1 and m itself) is
(a1 + 1)(a2 + 1) . . . (ak + 1)

Proof: we can take 0, 1, . . . , a1 of the p1’s, 0, 1, . . . , a2 of the
p2’s and so on.
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Counting The Product Rule

The Factorial Function

Used in many counting techniques

Definition: n! = n · (n − 1) · . . . · 2 · 1

0! = 1 by definition.
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Counting The Product Rule

Counting Powers of 2

Q: How many factors of 2 are there in n!?

Claim: (n ÷ 2) + (n ÷ 4) + (n ÷ 8) + . . . + (n ÷ 2k) where
2k ≤ n < 2k+1. Here n ÷m is the integer quotient when n is
divided by m.

Proof:

Each multiple of 2 gives a factor of 2

Each multiple of 22 = 4 gives an extra factor of 2

Each multiple of 23 = 8 gives another extra factor of 2

and so on
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Counting The Product Rule

Counting Number of Trailing Zeroes

Q:How many trailing zeroes in 150!?

Equal to the number of factors of 10.

There are many more 2’s than 5’s so it is enough to count the
number of 5’s in the factorization.

So the answer is (150÷ 5) + (150÷ 25) + (150÷ 125)

Easily generalizes to n!
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Counting The Sum Rule

The Sum Rule

If a job can be done in one of m ways or (exclusive or) in one of n
ways, the total number of ways is m + n. E.g.

If you must take 3 credits of Math or 3 credits of Physics (but
not both) an there are m Math courses and p Physics courses,
there is a total of m + p courses to choose from.

Often used together with the product rule
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Counting The Sum Rule

Counting Strings

Number of binary strings of length 4 with exactly one 1?

There are 4 choices (cases) for placing the 1

For each case, the number of ways of placing the 0’s is 1

By the sum rule the answer is 1 + 1 + 1 + 1 = 4

DNA sequences: strings using the characters A,C ,T ,G

Number of DNA sequences of length 4 containing exactly 1 A?

There are 4 choices (cases) for placing the A

For each case, the number of ways of placing the others is 33

(using the product rule)

By the sum rule, the answer is 33 + 33 + 33 + 33 = 4 · 33 = 108
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Counting The Sum Rule

More Complex Problems

Q: How many 2 digit numbers are multiples of 11 or 13?
A: 9 (multiples of 11) + 7 (multiples of 13)

Harder question: How many 3 digit numbers are multiples of 11
or 13?

The problem is 143 (and its multiples) are multiples of both!

How to avoid duplication?
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Counting The Sum Rule

Inclusion-Exclusion (or the subtraction rule) Ch 8.5

|A ∪ B | = |A|+ |B | − |A ∩ B |

Q: How many 3 digit numbers are multiples of 11 or 13?
A: Let A = 3 digit multiples of 11, B = No of 3 digit multiples
of 13. So A ∩ B = No of 3 digit multiples of 143.

Q: In how many ways can you toss two dice, so that the first
toss is a 1 OR the last toss is a 6?
A: Let A = No. of possible outcomes with the first toss being 1,
B = No. of possible outcomes with the second toss being 6. So
A ∩ B = No. of possible outcomes with the first toss being 1
and the second toss being 6. So,
|A ∪ B | = |A|+ |B | − |A ∩ B | = 6 + 6− 1 = 11
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Counting The Sum Rule

Complementary Counting

Instead of computing the cardinality of a set, it may be easier to
compute the cardinality of the complement

Q1: How many DNA sequences of length 5 do not contain a C?
A: Each position has 3 choices, so by the product rule, the
answer is 35 = 243

Q2: How many DNA sequences of length 5 contain at least 1 C?
The number of all possible DNA sequences of length 5 is
45 = 1024 (4 choices for each position)
The number of DNA sequences of length 5 with no 1’s is 243.
So the answer is 1024− 243 = 781

Q3: What is the number of length 5 alphanumeric strings with
at least one digit?
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Combinatorics

Combinatorics

Ch 6.3

Counts arrangements of objects

Used extensively in discrete probability computations

Primary tools: Permutations, Combinations
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Combinatorics

Permutations

Q: In how many ways can n objects be arranged in a line (order
matters)?

The answer is n! = n · (n − 1) · . . . · 2 · 1

Reason: n choices for the first place, n − 1 choices for the
second place etc.

Generalization: P(n, r) number of ways in which r students (out
of a class of n) can be lined up for a picture.

P(n, n) = n!

P(n, r) = n · (n − 1) · . . . · (n − r + 1) = n!/(n − r)!
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Combinatorics

Combinations

Different from permutations: order does not matter

Q: In how many ways can a team of r players be chosen from a set of
n players (order does not matter)?
A: Define

(
n
r

)
or C (n, r): Number of ways r objects can be chosen

from a set of n objects

Claim: P(n, r) = C (n, r)P(r , r)
Proof: To generate r -permutations from n objects, we first
choose a set of r objects (ignoring order) and then permute the
r objects in all possible ways

So, C (n, r) = P(n,r)
P(r ,r)

= n!
r !(n−r)!
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Combinatorics

Combinations - 2

C (n, r) = C (n, n − r): Choosing r objects from n is the same as
choosing the n − r items to leave out (the rest have to be
included)

Alternative way to think about combinations: Suppose we are
choosing 3 objects out of n, and order does not matter.

There are P(n, 3) ways of choosing them if order does not
matter.
Consider when objects 1,2,3 are chosen. These objects will
show up as 123, 132, 213, 231, 312, 321, i.e., in all 3! ways.
This is true for every other set of 3 objects
So we must divide P(n, 3) by 3! to get the number of
combinations
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Combinatorics

Problems

Q22, pg 414: How many permutations of the letters ABCDEFG
contain the string BCD?
Hint: Treat BCD as one ”letter”

How many binary strings of length n contain exactly k 1’s?
Hint: think of choosing positions for the k 1’s

Q 32, pg 414: How many strings of 6 lowercase letters contain
the letter a?
Hint: use complementary counting

Suppose a group of 5 men and 7 women want to pick a 5-person
team. How many teams can they make with 3 men and 2
women?
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The Binomial Theorem

Sec 6.4. Pascal’s Identity

C (n, r) + C (n, r − 1) = C (n + 1, r)

Direct proof:

C (n, r) + C (n, r − 1) =
n!

(n − r)!r !
+

n!

(n − r + 1)!(r − 1)!

=
n!

(n − r)!(r − 1)!

(
1

r
+

1

n − r + 1

)
=

n!

(n − r)!(r − 1)!

(
n + 1

r(n − r + 1)

)
=

(n + 1)!

(n − r + 1)!r !

Note: This identity uses only additions for computing C (n, r), and
avoids overflow issues
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The Binomial Theorem

Pascal’s Identity - A Combinatorial Proof

C (n + 1, r) = C (n, r) + C (n, r − 1)

LHS = Number of ways of choosing r objects from n + 1 objects

Alternative way: think about a particular (say, the first) object

Case 1: the first item is NOT chosen. So r objects must be
chosen for the n remaining objects. There are C (n, r) ways of
doing this

Case 2: the first item IS chosen. So r − 1 more objects must be
chosen for the n remaining objects. There are C (n, r − 1) ways
of doing this

These are disjoint cases, and the Sum Rule is applicable. Using
the Sum Rule, we get the RHS
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The Binomial Theorem

The Binomial Theorem

Page 416

(x + y)n =
∑n

r=0 C (n, r)xn−ry r , n = 0, 1, 2, . . .

Intuition: think of (x + y) · (x + y) · . . . · (x + y)

The set of terms of the form xn−ry r have a 1-1 correspondence
with the set of binary strings of length n, having exactly r 1’s.

There are C (n, r) or
(
n
r

)
such strings

Proof by induction on n
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The Binomial Theorem

The Binomial Theorem - Implications

(x + y)n =
n∑

r=0

C (n, r)xn−ry r

It follows that∑n
r=0 C (n, r) = 2n (substituting x = y = 1)

∑n
r=0(−1)rC (n, r) = 0 (substituting x = 1, y = −1)

∑n
r=0 C (n, r)2r = 3n (substituting x = 1, y = 2)
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The Binomial Theorem

Page 419, Pascal’s Triangle
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The Binomial Theorem

Problems

How many binary strings of length 10 with at least 8 1’s can we
form?

Use a combinatorial proof to show that

n∑
k=0

(
n

k

)2

=

(
2n

n

)
Prove the following inequality (a) by induction on n, and (b) by
using the Binomial Theorem(

2n

n

)
< 4n
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Advanced Counting

Advanced Counting

Ch 6, Section 5

Circular Permutations

Counting with repetitions

Counting with identical objects
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Advanced Counting

Circular Permutations

Postions have no absolute value, but clockwise and anti-clockwise
order are taken as different.

Number of Circular Permutations of n different objects: (n− 1)!

Reasoning 1: Fix the first object

Reasoning 2: Divide by the equivalent configurations (figure for
n = 3)

Number of Circular Permutations of n different objects taken r
at a time: P(n, r)/r
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Advanced Counting

Permutations with Repetitions

Theorem 1, Page 423: The number of r -permutations of a set
with n objects with repetitions allowed is nr

Proof: n choices for the first position, n choices for the second
position, ..., n choices for the r th position.
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Advanced Counting

Combinations with Repetitions

Example: How many ways can I select 5 pieces of fruit from apples,
oranges, strawberries and pears (I have at least 5 of each)?

Theorem 2, Page 425: There are C (n + r − 1, n − 1)
r -combinations from a set with n elements when repetition is
allowed.
Proof 1: Balls and separators argument
Proof 2: There is a bijection between the set we are trying to
count and the set of permutations of n + r − 1 of which r are
identical and the other n − 1 objects are identical.
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Advanced Counting

Comparison table

If n is the total number of items and r is the number of items
selected, then:

without repetition with repetition
permutations C (n, r) C (n + r − 1, r)
combinations P(n, r) nr
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Advanced Counting

Permutations with Identical Objects

Theorem 3 (page 428): The number of different permutations of
n objects where there are n1 indistinguishable objects of type 1,
n2 indistinguishable objects of type 2, ..., nk indistinguishable
objects of type k , and n = n1 + n2 + . . . + nk is

n!

n1!n2!...nk !

Reasoning 1: Choose places for the indistinguishable objects and
then they can be arranged in only one way, which gives
C (n, n1)C (n−n1, n2)C (n−n1−n1, n3)...C (n−n1−. . .−nk−1, nk)

Reasoning 2: Assume distinguishable and then divide by number
of times the same arrangement is counted
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Advanced Counting

Distributing Distinguishable Objects into

Distinguishable Boxes

Theorem 4 (page 429): The number of ways to distribute n
distinguishable objects into k distinguishable boxes so that ni
objects are placed in box i , i = 1, 2, ..., k is

n!

n1!n2!...nk !

Reasoning: Choose elements for the first box, then the second
box, and so on and use the product rule.
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Advanced Counting

Distributing Indistinguishable Objects into

Distinguishable Boxes

Page 430

The number of ways to distribute n indistinguishable objects into
k distinguishable boxes is C (n + k − 1, k − 1)

Reasoning: Use k − 1 separators. Each permutation of n + k − 1
objects of which k − 1 are identical and the other n are identical,
corresponds to a different arrangement of n indistinguishable
objects into k distinguishable boxes
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Advanced Counting

Problems

How many strings can we form with the letters of MISSISSIPPI?

How many solutions does the following equation have over the
non-negative integers?

x1 + x2 + x3 = 7

Answer: 7 identical objects in 3 distinguishable boxes; C (9, 2)

In how many ways can 5 boys and 5 girls be seated at a round
table so that no two girls may be together ?
Answer: Keep one seat vacant between two boys, 5 boys may be
seated in 4! ways. The 5 girls can sit in the 5 seats 5! ways. So
the answer is 4!5! = 2880 ways.
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