EECS 1028 M: Discrete Mathematics for Engineers

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on Moodle

Cardinality Revisited

Sec 2.5

- A set is finite (has finite cardinality) if its cardinality is some (finite) integer *n*.
- Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B
- E.g. alphabet (lower case), alphabet (upper case): $a \leftrightarrow A, \ldots z \leftrightarrow Z$.

Infinite sets

Questions:

- Why do we care?
- Cardinality of infinite sets
- Do all infinite sets have the same cardinality?

Need some machinery to reason about infinite sets

Countable sets

Definition: Is finite OR has the same cardinality as the positive integers.

E.g.

- The algorithm works for "any "...
- Induction!

Simplest type of infinite sets

Why do we care?

Infinite Sets

Important Countable Sets

Fact (Will not prove): Any subset of a countable set is countable.

- The set of all binary strings
- The set of all Java programs!
- The set of all algorithms
- the set of all possible texts in the world

Countable Sets - Another Formulation

- A set S is infinite if there exists a surjective function f : S → N.
 "The set S has at least as many elements as N."
- A set S is countable if there exists a surjective function f : N → S
 "The set S has no more elements than N."
- A set S is countably infinite if there exists a bijective function
 f : N → S
 "The sets S and N are of equal size."

Countable Sets - Proofs

Proving a set to be countable involves (usually) constructing an explicit bijection with positive integers.

Will prove that

- The set of integers \mathbb{Z} is countable
- The set of rationals \mathbb{Q} is countable!
- The set of reals \mathbb{R} is **not** countable!

$$\mathbb{W} = \{0, 1, 2, \ldots\}$$
 is Countable

• We need to find a bijection between this sequence and $\mathbb N$

• Notice the pattern: $1 \leftrightarrow 0, 2 \leftrightarrow 1, 3 \leftrightarrow 2, \ldots$

• So the bijection is $f : \mathbb{N} \to \mathbb{W}$,

f(n) = n - 1

The Integers are Countable

- Write them as $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, -3, 4, -4, \ldots\}.$
- $\bullet\,$ Find a bijection between this sequence and $\mathbb N$
- Notice the pattern: $1 \leftrightarrow 0$,
 - $2 \leftrightarrow 1$ • $4 \leftrightarrow 2$
 - $4 \leftrightarrow 2$ • $6 \leftrightarrow 3$
 - . . .

and

- $3 \leftrightarrow -1$
- $5 \leftrightarrow -2$
- $7 \leftrightarrow -3, \ldots$

So the bijection is

$$f(n) = n/2$$
 if n is even
= $-(n-1)/2$ otherwise

Other simple bijections

- Odd positive integers: $1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 5, 4 \rightarrow 7, \dots$ f(n) = 2n - 1
- Union of two countable sets A, B is countable:
 - Let $f : \mathbb{N} \to A, g : \mathbb{N} \to B$ be bijections
 - New bijection $h : \mathbb{N} \to A \cup B$

$$h(n) = f(n/2) \text{ if } n \text{ is even}$$

= $g((n-1)/2) \text{ if } n \text{ is odd}$

The Set of all Binary Strings is Countable

Call this set B

- Define f : B → N as follows. For any finite binary string b, f(b) = ConvertToInt(1b) That is, add a leading 1 to the string and interpret as as positive integer
- We can check that *f* is a bijection:
 - for any string we get a unique positive integer by adding a leading 1
 - for any natural number *n* we write it in binary and remove the most significant bit this yields a valid binary string
- this proves that *B* is countable

- The set of all Java programs is countable: Convert each Java program to a binary string using ASCII representations. The set of Java programs is a subset of the set of binary strings
- The set of all algorithms: written in English (pseudo-code), same logic as that used for Java programs
- the set of all possible English texts in the world: Same reasoning as above

The Set of Rationals is Countable

• Show that $\mathbb{Z}^+ \times \mathbb{Z}^+$ is countable.

• Therefore $\mathbb{Q}^+ \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ is countable

 \bullet To prove ${\mathbb Q}$ is countable, we use the technique used to construct a bijection from ${\mathbb Z}^+$ to ${\mathbb Z}$

$\mathbb{Z}^+\times\mathbb{Z}^+$ is Countable

By Cronholm144 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2203732

$\mathbb{Z}^+ \times \mathbb{Z}^+$ is Countable - Notes

- Why can we not count row-wise or column-wise?
- We can write down the ordering function explicitly
- \bullet Note that the ordering of ${\mathbb Q}$ is not in increasing order or decreasing order of value
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order
- So cannot use ideas like "between any two rational numbers x, y, there exists a rational number 0.5(x + y)" to prove uncountability

${\mathbb R}$ is not Countable

- Wrong proof strategy:
 - Suppose it is countable
 - Write them down in increasing order
 - Prove that there is a real number between any two successive reals.
- WHY is this incorrect? (Note that the above "proof" would show that the rationals are not countable!!)

${\mathbb R}$ is not Countable - Steps

- Cantor diagonalization argument (1879)
- VERY powerful, important technique
- Proof by contradiction

Strategy:

- Assume countable
- look at all numbers in the interval [0,1)
- list them in ANY order
- show that there is some number not listed

[0, 1) is not Countable - Diagonalization proof

- Assume [0, 1) is countable
- So there exists a bijection $F : \mathbb{N} \to \mathbb{R}$.
- So $F(1), F(2), \ldots$ are all infinite digit strings of the form $0.d_1d_2...$ (padded with zeroes if required).
- Define the number (infinite string of digits) $Y = 0.y_1y_2...$ where

$$y_j = F(i)_i + 1 \text{ if } F(i)_i < 8$$

= 7 if $F(i)_i \ge 8$

- Claim: $y \notin [0, 1)$
- Proof: if $y \in [0, 1)$, then $\exists j \in \mathbb{N}, y = F(j)$ But y, F(j) differs in the j^{th} digit by construction of y.

[0,1) is not Countable - Diagonalization proof - 2

new number not in list:

$$0.!a_1!b_2!c_3!d_4!e_5!f_6!g_7!h_8!i_9!j_{10}!k_{11}...$$

From https://skullsinthestars.com/2013/11/24/infinity-is-weird-whats-bigger-than-big/

[0, 1) is not Countable - Notes

• Complication: many numbers in [0, 1) have non-unique representations

• Q: Where does this proof fail on \mathbb{N} ?

 \bullet Next: Inferring that ${\mathbb R}$ is not countable

${\mathbb R}$ is not Countable

- Proof 1: Suppose ℝ is countable. Then every subset of ℝ is countable. Thus [0,1) is countable. This is a contradiction
- Proof 2: Show that the cardinality of ℝ^{≥0} the same as that of [0,1). Define a bijection f : ℝ^{≥0} → [0,1), by "wrapping" the interval [0,1) to the right half of the circle.

- f(P') = P in the picture
- $\lim_{x\to\infty} f(x) = N$ in the picture

$\mathcal{P}(\mathbb{N})$ is not Countable

- Again, assume this is countable. So there exists a listing s_1, s_2, \ldots of its elements
- We use diagonalization shows that there will always be an element x ∈ P(N) that does not occur in the list s₁, s₂,...
- The set P(N) contains all the subsets of N. So, each subset X ⊆ N can be identified by an infinite string of bits x₁x₂... such that x_j = 1 iff j ∈ X.
- Aside: The above is a bijection between $\mathcal{P}(\mathbb{N})$ and the set of all infinite binary strings $\{0,1\}^{\mathbb{N}}$

countable

• We show that $s \notin \mathcal{P}(\mathbb{N})$

By the same diagonalization

argument as before, $\mathcal{P}(\mathbb{N})$ is not

$\mathcal{P}(\mathbb{N})$ is not Countable - 2

By Jochen Burghardt, CC BY-SA 3.0

https://upload.wikimedia.org/wikipedia/commons/b/b7/Diagonal_argument_01_svg.svg, via Wikimedia Commons

$\mathcal{P}(\mathbb{N})$ is not Countable - Consequences

 Also, the power set of all binary strings is not countable: earlier we defined a bijection between the set of binary strings and N; so there is a bijection between the power set of all binary strings and P(N)

• Can be generalized from binary to any finite alphabet – this is used in later courses like EECS 2001: Introduction to the Theory of Computation

The Set of All Functions is not Countable

- There is a bijection from the set of all boolean functions with one integer input to the set of all subsets of $\mathbb N$
- We have seen that the set of all Java programs (or pseudocode, algorithms) is countable
- So there must exist problems for which there do not exist Java programs (or pseudocode, or algorithms), i.e., there are problems that are unsolvable!
- However, this does **not** tell us that any interesting problem is unsolvable

Other Infinities: A General Result

Theorem: There is no surjection from a set A to its power set $\mathcal{P}(A)$. Proof:

- Suppose there exists a surjection $f : A \rightarrow \mathcal{P}(A)$
- Construct a set $B = \{x \in A | x \notin f(x)\}$
- $B \subseteq A$, so $B \in \mathcal{P}(A)$
- So $\exists y \in A, f(y) = B$
- Is $y \in B$?
 - Yes: So $y \in f(y) = B$, but then $y \notin f(y)$ by the definition of B
 - No: So $y \notin f(y) = B$, but then $y \in f(y)$ by the definition of B
- Contradiction

Other Infinities - 2

- So we can build a "bigger infinity" from a given infinite set
- We proved $\mathbb{R}, \mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$ uncountable. We showed that \mathbb{R} has the same cardinality as $\mathcal{P}(\mathbb{N})$ and $\{0,1\}^{\mathbb{N}}$
- What if we take $\mathcal{P}(\mathbb{R})$?
 - Bigger set (different cardinality by the previous slide)
- Can we build bigger and bigger infinities this way?
 Yes, by the previous slide
- Are there any other infinities?
 - Generalized Continuum Hypothesis: No

Questions

- Neither $\mathbb R$ nor $\mathbb Z$ have finite cardinalities, yet one set is countable, the other is not.
- The cardinality of $\mathbb Z$ is called \aleph_0 ("aleph null"), and that of $\mathbb R$ is called \aleph_1
- Q: Is there a set whose cardinality is "in-between"?
- Cantor's Continuum hypothesis: No.
- How do I know problem (X) in unsolvable?
 EECS 2001, EECS 4111 and similar courses