Inheritance
Part 2

LASSONDE YORK J

UUUUUUU ELECTRICAL ENGINEERING
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE AND COMPUTER SCIENCE

Object Class

* The Object class is the root of all inheritance hierarchies

* The Object class defines methods applicable to and
required by all Java classes.

* To ensure all classes have these obligatory methods, all
classes implicitly extend the Object class

EECS1021 W18

Obligatory methods

* toString
e Returns a String representation of the object
* Object implementation outputs memory address

* equals
* Determines the equality between two objects
* Object implementation compares memory address

 hashCode

* Provides a pseudo-unique code
* Determines location in hashmap or hashset

* Additional methods not listed here (see API)

EECS1021 W18

Collections and Inheritance

» Specifying a parameterized type for a collection will allow
elements of that type (or derived from that type)

ArrayList<BankAccountV4> list =

new ArrayList<BankAccountV4 () ;
list.add((
list.add (new RewardAccount (..
list.add (new BankAccountVi (..
list.add((

new BankAccountV4 (...

new RewardAccount (...

for (BankAccountV4 ba : 1list)

{
System.out.println (ba.getBalance());

EECS1021 W18

The Substitutability Principle

* “When a parent is expected, a child is accepted”

* This allows the same code to process both parent classes
and their descendants

* For example, a program intended to handle BankAccountV4
objects will be able to handle RewardAccount objects
without modification

EECS1021 W18 5

Substitutability Example

* The following is correct:
* BankAccountV4 bal = new BankAccountV4 (..
* BankAccountV4 ba? = new RewardAccount (..

e Subsequently, any method that can be called on a
BankAccountV4 can also be called on a RewardAccount

* The following is NOT correct (why?):

* RewardAccount ra= new BankAccountV4 (...

EECS1021 W18

Determining Type

* To determine the data type of an object, use

* Instanceof operator
* acombination of getClass () and .class

* Examples on subsequent slides

EECS1021 W18

Determining Type (2)

* Using instanceof:
RankAccountV4 bal = new BankAccountVi4 (..
RankAccountV4 ba?2 = new RewardAccount (..

bal
ba?
ba?

bal

EECS1021 W18

instanceof BankAccountV4 = true
instanceof RewardAccount =2 true

instanceof BankAccountV4 = true
(by substitutability)

instanceof RewardAccount =2 false

Determining Type (3)

* UsinggetClass () and .class:
RankAccountV4 bal = new BankAccountVi4 (..

RankAccountV4 ba?2 = new RewardAccount (..
bal.getClass () == bal.getClass () =2 true
bal.getClass () == ba2.getClass () -2 false
bal.getClass () == BankAccountV4.class -2 true
ba2.getClass () == BankAccountV4.class -2 false

ba2.getClass () == RewardAccount.class -2 true

EECS1021 W18 9

The Need to Cast

* Wrong:
* BankAccountV4 ba = new RewardAccount (..
balance = ba.getPointBalance ()

* Early binding will fail because BanckAccountV4 does not have
agetPointBalance () method

* Correct:

* BRankAccountV4 ba = new RewardAccount (..
if (ba instanceof RewardCard)

{
balance = ((RewardCard) ba) .getPointBalance () ;

EECS1021 W18 10

Early and Late Binding

* Binding: validation of a method call

* Early binding:
e Occurs at compile-time

* Binding failure results in a compile-time error
(i.e., cannot find method)

* Late binding:
* Applicable only when (explicit) inheritance is used
* QOccurs at run-time

EECS1021 W18

11

Binding Example One

BankAccountV4 ba = new RewardAccount (..

ba.getBalance () ;

e Early binding:

* Verifies getBalance () method in BankAccountV4 class

* Late binding:
* Determines ba points to a RewardAccount object

e Cannot find getBalance () method in RewardAccount
because getBalance () was not overridden in RewardAccount

* CallsgetBalance () method in BankAccountV4 class

EECS1021 W18

12

Binding Example Two

RankAccountV4 ba = new RewardAccount (..

ba.deposit () ;

* Early binding:

* Verifies deposit () method in BankAccountV4 class

* Late binding:
* Determines ba points to a RewardAccount object
e Calls deposit () method in RewardAccount class instead

EECS1021 W18 13

Polymorphism

* The ability of a method to take on various forms

* Occurs when early binding targets a method in a parent
class and late binding targets the method with the same
signature in a descendant class

* E.g.,,the deposit (double amount) method from the
previous example

EECS1021 W18 14

Abstract Classes and Interfaces

* Interfaces:
* Define only method signatures
* Methods have no implemented body

* Allow implementer to define class requirements to other
implementers

e Abstract classes:
e Only some (not all) methods are implemented

* Allow implementers implement some methods and define
requirements for others

* Classes:
e All methods are implemented

EECS1021 W18

15

Abstract Classes and Interfaces)

* Classes: public class ClassName
 Abstract: public abstract class
ClassName

* Interface: public interface
InterfaceName

 Both abstract classes and interfaces can be used as
types for declarations, but neither can be instantiated

* Look for a class that extends it or a (static) method that
returns a pre-made instance of it

e E.g., Try to create an instance of Calendar

EECS1021 W18

Preventing Inheritance

* Inheritance has benefits, but sometimes class features
should not be changed

e E.g., Object.getClass()
* A class should not be able to change or falsify its identity

* E.g., methods in the Math class

* Should not be able to change how abs, sine, exp, etc. are
calculated

EECS1021 W18

17

Final Classes and Methods

* Final classes cannot be extended (no children)
public final class Math

{

* Final methods cannot be overridden

public final Class getClass ()
{

EECS1021 W18

18

