Graphical User Interfaces (GUIs)

LASSONDE YORK [I

UUUUUUU ELECTRICAL ENGINEERING
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE AND COMPUTER SCIENCE

GUls and Swing

* GUIs are a contemporary technique to interact with
computer applications

* More “user friendly” than text-based

* Swing is a toolkit to provide graphical interactive elements
(“widgets”)

* Other GUI toolkits are available for Java, as described in the
text

EECS1021 W18

Widgets

CLASS USED AS LOOKS LIKE
JButton JComponent component = new
JButton ("BUTTONS!") ; BUTTONS!
JLabel JComponent component =
" n A laml
new JLabel ("A label");
JTextField JComponent component = h
new JTextField("Text field"); Text fiel
JTextArea JComponent component = Text area

new JTextArea ("Text area');

JComboBox JComponent component =

——

4

new JComboBox<Strings (
new String(] {

JCheckBox JComponent component = D Check boxes
new JCheckBox ("Check boxes") ;

JRadioButton JComponent component =

new JRadioButton (O And radio bl.lttOﬂi
"And radio buttons") ;

EECS1021 W18

Event Handling

* Interacting with a widget causes an event object to be
created and dispatched

Handling that event involves writing code to “listen” for
specific events

* The listener must be registered to the widget

Different widgets cause different events

Event listeners must implement the corresponding
interface and methods

EECS1021 W18

Event Handli NE (continued)

e JButton, JCheckBox, JComboBox, JRadioButton
* Fires: ActionEvent event objects
* Listener: ActionListener interface
* Register using: addActionListener method

* Any component
* Fires: MouseEvent events for clicks
* Listener: Mouselistener interface
* Register using: addMouselistener method

e See also
* MouseMotionListener for mouse movement
» KeylListener for keyboard events (e.g., pressing a key)

EECS1021 W18

JFrame

* Represents a GUI window with:
e Atitle bar
* A (possibly) resizable border
e Buttons to minimize, maximize, and close

* GUI-based applications “extend” this class to take
advantage of its existing features, and add customizations

EECS1021 W18

JPanel

* A container used to arrange widgets

e Can also contain other panels

* Alternatively, can be used to “draw” custom shapes and
other graphic elements

EECS1021 W18

paintComponent

* This method is called when its component needs
“repainting” (e.g., when its state or appearance changes)

e Can be overridden (re-defined) to create a custom
appearance (e.g., draw shapes)

* Do not call this method directly

 Call repaint() instead

EECS1021 W18

MouseClicklnk Example

* Demonstrates:
* Basic principles of inheritance
* The purpose of overriding the paintComponent method

* Handling events by registering a listener

* Code presented in lecture

EECS1021 W18

Layout Managers

* Every component must have its position and size specified
and updated — very tedious

* Layout managers automate this process

* Each manager arranges components using
e Specifications from the programmer
* The state of each component
* Its own style rules

Each JPanel has a layout manager

e JPanel can contain zero or more JPanel objects, each with a
different manager to create complex layouts

EECS1021 W18

FlowLayout

e Arranged left-to-right, top-to-bottom
 “Flow” to the next line if needed

* Sizes based on “preferred” size

E FlowlLayout frame

FIGURE 11-9

EECS1021 W18 11

BorderLayout

 Components added using compass directions

* Ignores preferred size

FIGURE 11-10

EECS1021 W18

12

GridLayout

 Components arranged in a grid

* Ignores preferred size

EECS1021 W18

FIGURE 11-12

13

BoxLayout

* Like FlowLayout, but with more options:
» Specify alignment

* Specify spacer components that can stretch or stay rigid to
accommodate resizing the JFrame

FIGURE 11-17

EECS1021 W18

14

Additional Examples

A visual guide to layout managers
* https://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

FlowlLayout
* https://docs.oracle.com/javase/tutorial/uiswing/layout/flow.html

BorderLayout
* https://docs.oracle.com/javase/tutorial/uiswing/layout/border.html

e GridLayout

* https://docs.oracle.com/javase/tutorial/uiswing/layout/grid.html

* BoxLayout
e https://docs.oracle.com/javase/tutorial/uiswing/layout/box.html

EECS1021 W18 15

Separating View from Logic

* Listener code can be very lengthy

* For organization and maintenance, separate widget layout
code from listener code

* The “model-view-controller” (MVC) pattern separates code
based on responsibility:
* Model: the current state of the application

* View: the appearance of the application (GUI layout)
e Controller: how the GUI behaves (the listener(s))

 MVC concept developed further in EECS 2030

EECS1021 W18 16

