Exception Handling and
Debugging




What are Exceptions

* There are three sources that can lead to exceptions:

 The End User
* Garbage-in, garbage-out

* The Programmer
* Misunderstanding requirements and/or contract

e The Environment
* The VM, OS, hardware, etc.

EECS1021 W18



Exception Example

Given two integers, write a program to compute and
output their quotient.

System.out.println ("Enter the first integer:");
int a = input.nextInt();
System.out.println ("Enter the second:");

int b = input.nextInt();

int ¢ = a / b;
System.out.println ("Thelr quotient 1is: " + c);

EECS1021 W18



Exception Example (cont)

Enter the first integer:
8

Enter the second:
0

Exception 1in thread "main"
java.lang.ArithmeticException: / by zero

at Quotient.main (Quotient.java:16)

In this case:
- The error source is the end user.
- The incorrect operation is invalid
- The exception was not caught

EECS1021 W18



Anatomy of an Error Message

Enter the first integer:
8

FEnter the second:
0

Exception 1n thread "main"
java.lang.ArithmeticException: / by zero

at Quotient.maln (Quotient.java:16)

Type Stack trace Message

EECS1021 W18



Types of Exceptions

 Unchecked

* Does not need to be handled by code
* Derives from RuntimeException class:
* ArithmeticException
* ArraylndexOutOfBoundsException

* Checked

* Needs to be handled by code (e.g., “throws” clause)

* Derives from Exception class:
* FileNotFoundException
* |OException

EECS1021 W18



Exception Handling in General

* An error source can lead to an incorrect operation

e An incorrect operation may be valid or invalid

e An invalid operation throws an exception

e An exception becomes a runtime error unless caught

Sources

Programmer,
End User, or
Environment

|

Error

Incorrect
Operations

EECS1021 W18

—

Logic
Error

Handler

Valid

Operation?

Exception

no

yes

no

Runtime
Error




Try-Catch Block

try
{

code fragment

}
catch (SomeType e)

{

exception handler

}

program continues

EECS1021 W18



Examples

 Example 1:
* Prompt for a filename and output a message if the file is not found

* Example 2:
* Prompt for a filename
* Loop until the user provides a valid filename

EECS1021 W18



Example 1

Scanner 1input = new Scanner (System.in);

Scanner filelInput;

try

{
System.out.print ("Enter filename: ");
fileInput = new Scanner (new File(input.nextLine()));
System.out.println("File opened.");

}

catch (FileNotFoundException fnfe)

{
System.out.println("File not found!");

EECS1021 W18 10



Example 2

for (boolean repeat = true; repeat; )
{
try
{
System.out.print ("Enter filename: ");
fileInput = new Scanner (new File (input.nextLine()));
repeat = false;

}
catch (FileNotFoundException fnfe)

{

System.out.println("File not found! Try again.");

}
System.out.println("File opened.");

EECS1021 W18 11



Try-Catch with Multiple Exceptions

EECS1021 W18

try

{

}

catch (Type-1 e)
{

}

catch (Type-2 e)
{

}

éééch (Type—-n e)
{
}

program continues

12



Why not just catch Exception?

* Each different exception class represents a different
(invalid) situation

* Catching a specific exception allows you to handle that
particular circumstance

* Example:

* When you catch the FileNotFoundException, you know that the
file you attempted to access does not exist

EECS1021 W18

13



Debugging with Eclipse

 Demonstrated in lecture

EECS1021 W18

14



