Collections

LASSONDE YORK [I

NNNNNNNNNNNNNNNNNNNNNNNNNN ELECTRICAL ENGINEERING
UUUUUUUUUU AND COMPUTER SCIENCE

Storing Data

* Arrays
* Low overhead, but fixed size
e Access elements using index

* Collections
* Higher overhead, unlimited size
* Access elements using element, index, or key

* Convenience methods to add multiple elements, check if an
element is already in the collection

* Elements might be sorted or directly accessed

EECS1021 W18

Interfaces

* Define mandatory methods

* No implementation

* Provide an outline of required features

* Thus, all implementing classes

e All have a subset of common methods
(the ones defined in the interface)

* Provide the implementation based on task requirements or design
decisions

EECS1021 W18

Collections

* List
* Elements in sequence, duplicates allowed

* Set
* Element order depends on implementation
* Duplicates not allowed (like a mathematical set)

* Map

* “Maps” a unique key to a value and stores the pair (e.g., a map of
student numbers to student records)

* Element order depends on implementation

e Stack and Queue
e Coveredin EECS2030

EECS1021 W18

Implementations

* ArrayList
e Each element has its own index (like array)

* TreeSet
* Elements are sorted smallest to largest (ascending)

* TreeMap

» Keys are sorted smallest to largest (ascending)

* HashSet and HashMap

* No sorting, faster than “tree” collections

EECS1021 W18

Primitives Not Allowed!

* All elements in a collection must be objects

* Wrapper classes are used for primitive values

* Automatic boxing and unboxing gives the illusion that
primitives are allowed

EECS1021 W18

Generics

* Allows programmers to specify type of elements in the
collection

ArrayList<integer> list = new ArrayList<Integer>();

* Type checking done at compilation

list.add(“Hello”); // not allowed

* Collections can be reused for any type of elements

EECS1021 W18

Examples

 Code available on course website

* ArrayListExample
* TreeSetExample
* TreeMapExample

* Code demonstrated in lecture

EECS1021 W18

What Makes Objects Sortable?

* When adding elements, TreeSet and TreeMap implicitly call
the compareTo method

* The compareTo method returns a value indicating the
sorted order of two objects

* Not every type of object can be compared

* How to ensure a class has compareTo?
* The class implements the Comparable interface

EECS1021 W18

Application of Collections

e Duplicate checking (sets)
* Pairwise comparison (arrays or lists)

* Frequency counting (maps)

* Homework exercises and pseudo-code online
* Code taken-up in lecture

 Solutions won’t be posted, so take notes and try to
reproduce the solution later on your own

EECS1021 W18 10

