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Feature Learning in Graphs

Goal: Learn features for a set of objects

Feature learning in graphs:

§ Given:

§ Learn a function:
§ Not task specific: Just given a graph, 

learn f. Can use the features for any
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes
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Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s

1

belong-
ing to the same community exhibit homophily, while the hub nodes
u and s

6

in the two communities are structurally equivalent. Real-
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BFS vs. DFS

Structural vs. Homophilic equivalence

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec

parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F
1

scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F

1

scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).
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Interpolating BFS and DFS

§ Biased random walk procedure, that 
given a node # samples !" #

important as it reduces the variance in characterizing the distribu-
tion of 1-hop nodes with respect the source node. However, a very
small portion of the graph is explored for any given k.

The opposite is true for DFS which can explore larger parts of
the network as it can move further away from the source node u
(with sample size k being fixed). In DFS, the sampled nodes more
accurately reflect a macro-view of the neighborhood which is es-
sential in inferring communities based on homophily. However,
the issue with DFS is that it is important to not only infer which
node-to-node dependencies exist in a network, but also to charac-
terize the exact nature of these dependencies. This is hard given
we have a constrain on the sample size and a large neighborhood
to explore, resulting in high variance. Secondly, moving to much
greater depths leads to complex dependencies since a sampled node
may be far from the source and potentially less representative.

3.2 node2vec
Building on the above observations, we design a flexible neigh-

borhood sampling strategy which allows us to smoothly interpo-
late between BFS- and DFS-type of neighborhood sampling. We
achieve this by developing a flexible biased random walk procedure
that can explore neighborhoods in a BFS as well as DFS fashion.

3.2.1 Random Walks

Formally, given a source node u, we simulate a random walk of
fixed length l. Let c

i

denote the ith node in the walk, starting with
c
0

= u. Nodes c
i

are generated by the following distribution:

P (c
i

= x | c
i�1

= v) =

(
⇡

vx

Z

if (v, x) 2 E

0 otherwise

where ⇡
vx

is the unnormalized transition probability between nodes
v and x, and Z is the normalizing constant. The simplest way
would be to transition based on the weights of the edges in the
graph (⇡

vx

= w
vx

). (In case of unweighted graphs w
vx

= 1.)
However, we want to adaptively change transition probabilities ⇡

vx

based on the network structure and this way guide the random walk
to explore different types of network neighborhoods.

Benefits of random walks. There are several benefits of random
walks over pure BFS/DFS sampling approaches. Random walks
are computationally efficient in terms of both space and time re-
quirements. The space complexity to store the immediate neigh-
bors of every source node in the graph is O(|E|). The other key ad-
vantage of random walks over classic search-based sampling strate-
gies is its time complexity. In particular, by imposing graph con-
nectivity in the sample generation process, random walks provide
a convenient mechanism to increase the effective sampling rate by
reusing samples across different source nodes. By simulating a
random walk of length l > k we can generate k samples for l � k
nodes at once due to the Markovian nature of the random walk.
Hence, our effective complexity is O(

l

k(l�k)

) per sample. For ex-
ample, in Figure 1 we sample a random walk {u, s

4

, s
5

, s
6

, s
8

, s
9

}
of length l = 6, which results in N

S

(u) = {s
4

, s
5

, s
6

}, N
S

(s
4

) =

{s
5

, s
6

, s
8

} and N
S

(s
5

) = {s
6

, s
8

, s
9

}.

3.2.2 Search bias ↵
A naive way to bias our random walks would be to sample the

next node based on the edge weight w
vx

. However, this does
not allow us to account for the network structure and guide our
search procedure to explore different types of network neighbor-
hoods. Additionally, unlike BFS and DFS which are extreme sam-
pling paradigms suited for structural equivalence and homophily
respectively, our random walks should accommodate for the fact

t 

x2 x1 

v 

x3 
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α=1/q 
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Figure 2: Illustration of our random walk procedure. The walk
just transitioned from t to v and is now evaluating its next step
out of node v. Edge labels indicate search biases ↵.

that these notions of equivalence are not competing or exclusive,
and that real-world networks commonly exhibit a mixture of both.

We define two parameters p and q which guide the random walk.
Consider that a random walk just traversed edge (t, v) to now reside
at node v (Figure 2). The walk now needs to decide on the next
step so it evaluates the transition probabilities ⇡

vx

on edges (v, x)
leading from v. We set the unnormalized transition probability to
⇡
vx

= ↵
pq

(t, x) · w
vx

, where

↵
pq

(t, x) =

8
><

>:

1

p

if d
tx

= 0

1 if d
tx

= 1

1

q

if d
tx

= 2

and d
tx

denotes the shortest path distance between nodes t and x.
Note that d

tx

must be one of {0, 1, 2}, and hence, the two parame-
ters are necessary and sufficient to guide the walk.

Intuitively, parameters p and q control how fast the walk explores
and leaves the neighborhood of starting node u. In particular, the
parameters allow our search procedure to (approximately) interpo-
late between BFS and DFS and thereby reflect an affinity for dif-
ferent notions of node equivalences.

Return parameter, p. Parameter p controls the likelihood of im-
mediately revisiting a node in the walk. Setting it to a high value
(> max(q, 1)) ensures that we are less likely to sample an already-
visited node in the following two steps (unless the next node in the
walk had no other neighbor). This is desirable for sampling strate-
gies as it encourages moderate exploration and avoids 2-hop redun-
dancy in sampling. On the other hand, if p is low (< min(q, 1)), it
would lead the walk to backtrack a step (Figure 2) and this would
keep the walk “local” as it would keep close to the starting node u.

In-out parameter, q. Parameter q allows the search to differentiate
between “inward” and “outward” nodes. Going back to Figure 2,
if q > 1, the random walk is biased towards nodes close to node t.
Such walks obtain a local view of the underlying graph with respect
to the start node in the walk, and approximate BFS behavior in the
sense that our samples comprise of nodes within a small locality.

In contrast, if q < 1, the walk is more inclined to visit nodes
which are further away from the node t. Such behavior is reflec-
tive of DFS which encourages outward exploration. However, an
essential difference here is that we achieve DFS-like exploration
within the random walk framework. Hence, the sampled nodes are
not at strictly increasing distances from a given source node u, but
in turn, we benefit from tractable preprocessing and superior sam-
pling efficiency of random walks.

3.2.3 The node2vec algorithm

The pseudocode for node2vec , is given in Algorithm 1. Starting
from every node u, we simulate r fixed length random walks sam-
pling based on the transition probabilities ⇡

vx

. Note that the tran-

The walk just traversed (), +) and aims to make a next step.
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Multilabel Classification

§ Spectral embedding

§ DeepWalk [B. Perozzi et al., KDD ‘14]

§ LINE [J. Tang et al.. WWW ‘15]

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec

parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%
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In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
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Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F

1

scores
for comparing performance in Table 2 and the relative performance
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Trade-offs

task-specific heuristics  
inefficient usage of statistics
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