node2vec: Scalable Feature Learning for Networks

Aditya Grover, Jure Leskovec

Farzaneh Heidari

Outline

- word2vec (Background)
- Random Walk (Background)
- node2vec
- Evaluation Results
- Deficiencies

End-to-End Graph Analytics

Machine Learning Lifecycle

 (Supervised) Machine Learning Lifecycle: This feature, that feature.
Every single time!

word2vec

word2vec's backbone

 $J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{t=1}^{T} \log p(w_{t+j}|w_t)$ $t=1 - m \le j \le m, j \ne 0$

 $p(o|c) = \frac{\exp\left(u_o^T v_c\right)}{\sum_{w=1}^{W} \exp\left(u_w^T v_c\right)}$

Window in Graph

Random Walk

Stochastic Process

Path of random steps

Feature Learning in Graphs

Goal: Learn features for a set of objects

Feature learning in graphs:

- Given: G = (V, E)
- Learn a function: $f: V \to \mathbb{R}^d$
 - Not task specific: Just given a graph, learn f. Can use the features for <u>any</u> downstream task!

Unsupervised Feature Learning

- Intuition: Find a mapping of nodes to d-dimensions that preserves some sort of node similarity
- Idea: Learn node embedding such that nearby nodes are close together
- Given a node u, how do we define nearby nodes?
 - N_S(u) ... neighbourhood of u obtained by sampling strategy S

How to determine $N_S(u)$

Two classic search strategies to define a neighborhood of a given node:

for $|N_S(u)| = 3$

BFS vs. DFS

BFS: Micro-view of neighbourhood

Structural vs. Homophilic equivalence

BFS vs. DFS

Structural vs. Homophilic equivalence

BFS-based: Structural equivalence (structural roles)

DFS-based: Homophily (network communities)

Interpolating BFS and DFS

Biased random walk procedure, that given a node u samples $N_S(u)$

The walk just traversed (t, v) and aims to make a next step.

Jure Leskovec, Stanford

Multilabel Classification

Algorithm	Dataset		
	BlogCatalog	PPI	Wikipedia
Spectral Clustering	0.0405	0.0681	0.0395
DeepWalk	0.2110	0.1768	0.1274
LINE	0.0784	0.1447	0.1164
node2vec	0.2581	0.1791	0.1552
node2vec settings (p,q)	0.25, 0.25	4, 1	4, 0.5
Gain of node2vec [%]	22.3	1.3	21.8

- Spectral embedding
- DeepWalk [B. Perozzi et al., KDD '14]
- LINE [J. Tang et al.. WWW '15]

Trade-offs

task-specific heuristics inefficient usage of statistics

Thank you

