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Introduction



Motivation
Data streams can change over 
time as the underlying 
processes that generate them 
change. 

Some changes are:

• Spurious and pertain to glitches 
in the data. 

• Genuine, caused by changes in 
the underlying distributions. 

• Gradual or more precipitous.

We would like to detect 
changes in a variety of 
settings: 

• Data cleaning,
• Data modeling, and
• Alarm systems.



Motivation: Settings (1/2)

Data cleaning

Spurious changes affect the quality 
of the data.

Missing values, default values 
erroneously set, discrepancy from an 
expected stochastic process, etc.

Data modeling

Shifts in underlying probability 
distributions can cause models to 
fail.

While much effort is spent in building, 
validating and putting models in place, 
very little done is in terms of detecting 
changes. 

Sometimes, models might be too 
insensitive to change, reflecting the 
change only after a big shift in the 
distributions.



Motivation: Settings (2/2)

Alarm systems

Some changes are transient, and 
yet important to detect.

Example: Network traffic monitoring
Hard to posit realistic underlying models, 
yet some anomaly detection approach is 
needed to detect (in real time) shifts in 
network behavior along a wide array of 
dimensions.



Desiderata — Something that is needed or wanted.

Any change detection mechanism has to satisfy a number of criteria to be viable:

• Generality
Applications for change detection come from a 
variety of sources, and the notion of “change” varies 
from setting to setting.

• Scalability
Any approach must be scalable to very large 
datasets, and be able to adapt to streaming settings 
as well if necessary. 

Must be able to work with multidimensional data 
directly in order to capture spatial relationships and 
correlations.

• Statistical soundness: 
Key problems with a change detection 
mechanism is determining the significance of 
an event.

Ensure that any changes reported by the 
method can be evaluated objectively

Allowing the method to be used for a diverse 
set of applications.



Approach
A natural approach to detecting change in data is to model the data via a distribution. 

One can compare representative statistics like means or fit simple models like linear 
regression to capture variable interactions. 

Such approaches aim to capture some simple aspects of the joint distribution 
rather than the entire multivariate distribution.

e.g. centrality, relationships between some specific attributes



Approach: Parametric vs Nonparametric

Parametric approach
Very powerful when data is known to 
come from specific distributions

Wide variety of methods can be used to 
estimate distributions precisely. 

If distributional assumptions hold, 
require very little data in order to work 
successfully.

However, generality is violated. 
Data that one typically encounters may not 
arise from any standard distribution, and 
thus parametric approaches are not 
applicable.

Nonparametric approach
Make no distributional assumptions on 
the data.

As before, computes a test statistic (a 
scalar function of the data), and 
compares the values computed to 
determine whether a change has 
occurred.



Approach: Information-theoretic (1/2)

Tests attempt to capture a notion of 
distance between two distributions.

A measure that is one of the most 
general ways of representing this 
distance is the relative entropy 
from information theory, also 
known as the Kullback-Leibler (or 
KL) distance.



Approach: Information-theoretic (2/2)

The KL-distance has many properties that make it ideal for estimating the distance 
between distributions:

Given a set of data that we wish to fit to a distribution in a family of distributions, 
the maximum likelihood estimator is the one that minimizes the KL-distance to the 
true distribution.

KL-distance generalizes standard tests of difference like: the t-test, chi-square and 
the Kulldorff spatial scan statistic.

Optimal classifier that attempts to distinguish between two distributions p and q
will have a false positive (or false negative) error proportional to an exponential in 
the KL-distance from p to q (the exponent is negative, so the error decreases as the 
distance increases).

Example of an α-divergence



Approach: Statistical Significance

How do we determine whether the measure of change returned is significant or not?

A statistical approach poses the question by specifying a null hypothesis (in this 
case, that change has not occurred), and then asking “How likely is it that the 
measurement could have been obtained under the null hypothesis?”

The smaller this value “p-value”, the more likely it is that the change is significant

Parametric tests: significance testing is fairly straightforward.

Some nonparametric tests: significance testing can be performed by exploiting certain 
special properties of the tests used.

But If we wish to determine statistical significance in more general settings, we need a 
more general approach to determining confidence intervals.



Approach: Bootstrap Method

Data-centric approach to determining confidence intervals for inferences on data.

By repeated sampling (with or without replacement) from the data, determines 
whether a specific measurement on the data is significant or not.

Can make strong inferences from small datasets

Satisfy the goal of generality & statistical soundness

Well suited for use with nonparametric methods



Scope
The paper presents a general information theoretic approach to the problem of 
multi-dimensional change detection. Specifically:

Use of Kullback-Leibler distance as a 
measure of change in multi-
dimensional data.

Use of bootstrap methods to 
establish the statistical significance 
of distances computed.

An efficient algorithm for change 
detection on streaming data that 
scales well with dimension.

An approach for identifying sub-
regions of the data that have the 
highest changes.

Empirical demonstration (both on real 
and synthetic data) of the accuracy of 
approach.



Algorithm



Overview: Definitions

Let 𝑥1, 𝑥2, … be a stream of objects, over 𝑥𝑖 ∈ ℝ𝑑.

A window 𝑊𝑖,𝑛 denotes the sequence of points ending at 𝑥𝑖 of size n: 

𝑊𝑖,𝑛 = (𝑥𝑖−𝑛+1, . . . , 𝑥𝑖).

Distances are measured between distributions constructed from points in two 
windows 𝑊𝑡 and 𝑊𝑡′.



Overview: Sliding Windows (1/2)

Using different-sized windows allows one to detect changes at different scales.

Can run scheme with different window sizes in parallel.
Each window size can be processed independently.

Will choose window sizes that increase exponentially 
Having sizes n, 2n, 4n, and so on.

Note that we assume that the time a point arrives is its time stamp; we do not 
consider streams where data might arrive out of (time) order.

We consider two sliding window models:
1. Adjacent windows model

2. Fix-slide windows model



Overview: Sliding Windows (2/2)

Adjacent Windows Model

The two windows that we measure 
the difference between are 𝑊𝑡 and 
𝑊𝑡−𝑛, where t is the current time.

Better captures the notion of “rate of 
change” at the current moment

Will repeatedly only detect small 
changes

Fix-slide Windows Model

We measure the difference 
between a fixed window 𝑊𝑛 and a 
sliding window 𝑊𝑡.

More suitable for change detection 
when gradual changes may cumulate 
over time



Overview
1. Constructed windows 𝑊𝑡 and 𝑊𝑡′

2. Each window 𝑊𝑡 defines an empirical 
distribution 𝐹𝑡.

3. Compute the distance 

𝑑𝑡 = 𝑑(𝐹𝑡, 𝐹𝑡′) from 𝐹𝑡 to 𝐹𝑡′

where 𝑡′ is either t − n or 𝑛 depending on the 
sliding window model.

This distance is our measure of the difference 
between the two distributions.

4. Determine whether this measurement 
is statistically significant

Assert the null hypothesis: 𝐻0 ∶ 𝐹𝑡 = 𝐹𝑡′ to 
determine the probability of observing the 
value 𝑑𝑡 if 𝐻0 is true.

To determine the probability of observing the 
value 𝒅𝒕 if 𝑯𝟎 is true, we use bootstrap 
estimates:

1. Generate a set of 𝑘 bootstrap estimates:

෡𝑑𝑖 , 𝑖 = 1…𝑘.

2. Form an empirical distribution from which 
we construct a critical region (𝑑ℎ𝑖 ,∞).

3. If 𝑑𝑡 falls into this region, we consider that 
𝐻0 is invalidated. 

4. Since we test 𝐻0 at every time step, we 
only signal a change after we have seen 𝛾𝑛
distances larger than 𝑑ℎ𝑖 in a row

where 𝛾 is a small constant defined by the user.

True change should be more persistent than a false 
alarm. 𝜸 is the persistence factor. 

5. If no change has been reported, we update 
the windows and repeat the procedure.



Overview



Information-theoretic Distances
The measure we use to compare distributions is the Kullback-Leibler distance or the 
relative entropy. 

KL-distance between two probability mass functions 𝑝(𝑥) and 𝑞(𝑥) is defined as:

where the sum is taken (in the discrete setting) over the atoms of the space of events 𝑋.

However, the relative entropy is defined on a pair of probability mass functions. 

How do we map sequences of points to distributions?

Theory of types



Information-theoretic Distances
Constructing a Distribution from a Stream (1/3)

Let 𝑤 = {𝑎1, 𝑎2, … , 𝑎𝑛} be a multiset of letters from a finite alphabet 𝒜.

The type 𝑃𝑤 of 𝑤 is thus vector representing the relative proportion of each element 
of 𝒜 in 𝑤

Each set 𝑤 defines a empirical probability distribution 𝑃𝑤.
For each set, we compute the corresponding empirical distribution, and compute the distance 
between the two distributions, viewed as mass functions.



Information-theoretic Distances
Constructing a Distribution from a Stream (2/3)

For d-dimensional data, the “alphabet” will consist of a letter for each leaf of the 
quad tree used to store the data, with the count being the number of points in that 
cell.

One advantage of the use of types is that categorical data can be processed in exactly 
the same way (with a letter associated with each value in the domain).

One problem with this approach is that the ratio 𝑝/𝑞 is undefined if 𝑞 = 0. A simple 
correction replaces the estimate 𝑃𝑤 𝑎 by the estimate:



Information-theoretic Distances
Constructing a Distribution from a Stream (3/3)

In summary:

Given:
Two windows 𝑊1, 𝑊2, and 

Their associated multisets of letters 𝒘1, 𝒘2

Constructed from the alphabet defined over quad tree leaf cells 

The KL-distance from 𝑊1 to 𝑊2 is:



Bootstrap Methods + Hypothesis Testing
The bootstrap method is a method for determining the significance (or p-value) of a 
test statistic, eliminating bias and improving confidence intervals when doing 
statistical testing.

1. Given the empirical distributions ෠𝑃 derived from the counts 𝑃

2. Sample 𝑘 sets 𝑆1,…, 𝑆𝑘, each of size 2𝑛

3. Treat first 𝑛 elements 𝑆𝑖1 as coming from one distribution 𝐹

4. Treat remaining 𝑛 elements 𝑆𝑖2 = 𝑆𝑖 − 𝑆𝑖1 as coming from other distribution 𝐺

5. Compute bootstrap estimates ෡𝑑𝑖 = 𝐷 𝑆𝑖 ∥ 𝑆𝑖2 .

6. Once the desired ASL α is fixed, choose the (1 − α)-percentile of these bootstrap 
estimates as 𝑑ℎ𝑖; (𝑑ℎ𝑖 ,∞) is the critical region.

7. If መ𝑑 > 𝑑ℎ𝑖, measurement is statistically significant and invalidates 𝐻0.



Data Structures
Assume that the data points in the streams lie in a d-dimensional hypercube.

In order to maintain the KL-distance between two empirical distributions, we need a 
way of defining the “types”

i.e.: a space partitioning scheme that subdivides the space into cells.

In principle any space partitioning scheme works in the framework

e.g.: quad tree or k-d-tree

But would like to use a structure that:

Scales well with the size and dimensionality of the data, and 

Produces “nicely shaped” cells at the same time.



Data Structures: Quad tree

The square cells induced by a quad 
tree are intuitively good, but its 2𝑑

fan-out might hurt its scalability in 
high dimensions.



Data Structures: k-d tree

A k-d-tree scales well with 
dimensionality, but it might 
generates very skinny cells.



Data Structures: kdq tree (1/3)

A kdq-tree is a binary tree, each of whose nodes is associated with a box.

The box associated with the root 𝑣 is the entire unit square

1. Divided into two halves by a vertical cut passing through its center.

2. The two smaller boxes are then associated with the two children of the root 𝑣𝑙 , 𝑣𝑟.

3. Construct the trees rooted at 𝑣𝑙 and 𝑣𝑟 recursively, and 

4. As we go down the tree, the cuts alternate between vertical and horizontal.

5. Stop the recursion if either:
1. The number of points in the box is below τ, or 

2. All the sides of the box have reached a minimum length δ

τ and δ are user specified parameters



Data Structures: kdq tree (2/3)

For a kdq-tree built on 𝑛 points in 𝑑 dimensions:

1. Has at most 𝑂(𝑑𝑛 ⋅ log(1/𝛿)/𝜏) nodes

2. Height is at most 𝑂(𝑑 ⋅ log(1/𝛿))

3. Can be constructed in time 𝑂(𝑑𝑛 ⋅ log(1/𝛿))

4. Aspect ratio of any cell is at most 2

Size scales linearly as the dimensionality and the size of data

Generates nicely shaped cells

Very cheap to maintain the counts associated with the nodes

The cost is proportional to the height of tree.



Data Structures: kdq tree (3/3)

Build the kdq-tree on the first window 𝑊1

Use the cells induced by this tree as the types to form the empirical distributions 
for both 𝑊1 and 𝑊2 until a change has been detected, at which point we rebuild 
the structure. Use structure to compute the bootstrap estimates.



Data Structures: kdq tree 
Maintaining the KL-distance (1/2)

Let 𝑃𝑣, 𝑄𝑣 be number of points from sets 𝑊1, 𝑊2 that are inside the cell associated 
with the leaf 𝑣 of the kdq-tree.

We would like to maintain the KL-distance between P = {𝑃𝑣} and Q = {𝑄𝑣} :

where 𝐿 is the number of leaves in the kdq-tree.



Data Structures: kdq tree
Maintaining the KL-distance (2/2)

Since 𝑊1 , 𝑊2 and 𝐿 are readily known, we only need to maintain:

Since counts 𝑃𝑣, 𝑄𝑣 can be updated in 𝑂(𝑑 ⋅ log(1/𝛿)) time per time step 

KL-distance can also be maintained incrementally in the same time bound.



Data Structures: kdq tree
Identifying regions of greatest difference (1/2)

The kdq-tree structure for KL-distance based change detection can also be used to 
identify the most different regions between the two datasets, once a change has 
been reported. 

The idea is to maintain a special case of the KL-distance at each node (internal or 
leaf) 𝑣 of the kdq-tree. This special case is the Kulldorff spatial scan statistic, which 
is defined at a node v as:



Data Structures: kdq tree
Identifying regions of greatest difference (2/2)

Note that it is simply the KL-distance between 𝑊1 and 𝑊2 when there are only two 
bins: 𝐵𝑣 and its complement 𝐵𝑣. Kulldorff’s statistic basically measures how the two 
datasets differ only with respect to the region associated with v.

Measures the log likelihood ratio of two hypotheses: 

1. The region 𝑣 has a different density from the rest of space, and 

2. All regions have uniform density. 

Note that this statistic can be easily maintained as it depends only on 𝑃𝑣 and 𝑄𝑣.



Experiments



Experiments
In all the experiments, we use the following default values for some of the 
parameters, unless specified otherwise.



Evaluation: Accuracy of KL-Distance (1/2)

Varying the mean µ

The KL distance between adjacent 
windows in a stream with varying 
(µ1, µ2). Changes occur every 
50,000 points.

Varying 𝝈

The KL distance between adjacent 
windows in a stream with varying 
(𝜎1, 𝜎2). Changes occur every 
50,000 points.



Evaluation: Accuracy of KL-Distance (2/2)

Varying the correlation 𝝆

The KL distance between adjacent 
windows in a the stream with 
varying 𝜌. Changes occur every 
50,000 points.

An empirical case study

The KL distance between adjacent 
windows in a 3D data stream obtained 
from telephone usage in two urban 
centers. The change between urban 
centers occurs at 𝑡 = 120,000.



Evaluation: Change Detection Method (1/4)

Varying Data Sources

Change detection results on 
different 2D normal data streams.

Varying the ASL (Achievable Significance Level)

Change detection results on the 
streams with different ASLs.



Evaluation: Change Detection Method (2/4)

Varying the window size

Change detection results on the 
streams with different window 
sizes.

Varying number of bootstrap samples

Change detection results on the 
streams with different number of 
bootstrap samples.



Evaluation: Change Detection Method (3/4)

Poisson distributions

Change detection results on 2D 
Poisson data streams.

Higher dimensions

Change detection results on d-
dimensional streams.



Evaluation: Change Detection Method (4/4)

Efficiency

Running times with 
different 𝑛’s and 𝑑’s.



Evaluation: Identifying Regions of Greatest Discrepancy

Visualization of the Kulldorff 
statistic at depth 8 of the kdq-tree. 
The hole is located at (0.6, 0.6) and 
has radius 0.2.



Evaluation: Comparison with Prior Work in 1D



Conclusion



Conclusion
The paper presents a general scheme for nonparametric change detection in 
multidimensional data streams, 

Based on an information-theoretic approach to the data 

Intrinsically multidimensional

Can even be used to incorporate categorical attributes in data

Experiments indicate that this approach is comparable to more constrained (but 
powerful) approaches in one dimension, and works efficiently and accurately in 
higher dimensions.



Thanks
Any Questions?


