Finding Recent Frequent Itemsets Adaptively over Online Data Stream

Yueting Chen

Outline

- Introduction
 - Data Stream
 - Related Works
- Preliminaries
- Finding recent frequent itemsets
 - Count estimations of an itemset
 - estDec Method
- Experiments
- Conclusions

2

Challenges

- Each data event should be examined *at most once*.
- Memory usage for data stream analysis should be restricted finitely.
- Newly generated data elements should be processed as fast as possible.
- Up-to-date analysis result of a data stream should be instantly available when requested

Data Stream Types

- Offline Data Stream
 - Application: data warehouse system
 - Batch processing model
 - Process a number of new transactions together.
 - Up-to-date result only available after a batch process is finished.
 - The granularity of generating results depends on the batch size.
- Online Data Stream
 - Application: network monitoring
 - Batch processing model is **not** applicable.
 - Tradeoffs between processing time & mining accuracy without any fixed granule.

Related Works

- · Lossy Counting algorithm
- SWF algorithm

Lossy Counting algorithm

- Two parameters:
 - Minimum support
 - Maximum allowable error ε
- · Batch Process model with a fixed buffer
- Use a data structure(D) to maintain the previous result
 - Containing a set of entries of form (e, f, Δ) Maximum possible error count

itemset count

- Update method (for each itemset in a batch):
 - If itemset e not in D, insert a new entry.
 - Else $f \leftarrow f + (new \ count)$
 - If $f+\Delta < \varepsilon x N$, then prune this entry from D.
 - $\Delta \leftarrow [\epsilon x N']$, N' number of transactions that were processed up to the latest batch.

Lossy Counting algorithm

· Can not identify the recent change of stream

SWT Algorithm

· Use sliding window to find frequent itemsets

- Each window composed of a sequence of partitions.
- Each partition maintains a number of transactions.
- Maintain candidate 2-itemsets separately
- When the window is advanced
 - Disregard oldest partition
 - Adjust the candidate 2-itemsets
 - Generate all possible candidate itemsets
 - · Generate new frequent itemsets by scanning all the transactions in the window

SWT Algorithm

- Still use the batch processing model
- Candidate generation takes time.

Objective

- Finding recent frequent itemsets *adaptively* over *online* data stream
 - Examine each transaction in data stream one-by-one.
 - Without candidate generation
 - Consider information differentiation
 - Minimize the total number of significant itemsets in memory.

Preliminaries

To make life easier

Formal Definitions

- Let $I=\{i_1, i_2, \dots, i_n\}$ be a set of current items
- An *itemset* e is a set of items such that e∈(2ⁱ-{Ø}) where 2ⁱ is the power set of *I*. The *length* |e| of an *itemset* e is the number of items that form the itemset and it is denoted by an |e|-itemset. An itemset {a,b,c} is denoted by abc.
- A transaction is a subset of *I* and each transaction has a unique transaction identifier *TID*. A transaction generated at the *kth* turn is denoted by T_k .
- When a new transaction T_k is generated, the current **data stream** D_k is composed of all transactions that have ever been generated so far i.e., $D_k = \langle T_1, T_2, ..., T_k \rangle$ and the **total number** of transactions in D_k is denoted by $|D|_k$.

Decay

- Goal:We want to concentrate on most recently generated transactions.
- Decay unit
 - determines the chunk of information to be decayed together.
- Decay rate
 - the reducing rate of a weight for a fixed decay-unit
 - Decay-base **b** (b > 1)
 - Determines decay the amount of weight reduction per a decay-unit.
 - Decay-base-life **h**
 - defined by the number of decay-units that makes the current weight be b^{-1}
 - Decay rate **d**
 - $d = b^{-(1/h)}$ (b>1, h≥1, b⁻¹≤d<1)

Decay (cont'd)

• Theorem I. Given a decay rate $d = b^{-(1/h)} (b>1, h\ge 1, b^{-1} \le d \le 1)$, the total number of transactions $|D|_k$ in the current data stream D_k is found as follows:

$$|D|_k = \begin{cases} 1 & \text{if } k = 1 \\ |D|_{k-1} \times d + 1 & \text{if } k \ge 2 \end{cases}$$

• The value of $|D|_k$ converges to 1/(1 - d) as the value k increases infinitely.

We'll skip proof here.

Finding recent frequent itemsets

- Key issue:
 - Avoid candidate generation.
- Two approaches
 - Use estimated count instead of real count.
 - Use tree structure.
- Basic idea

ABC ABD ACD BCD ABAC BC AD BD CD A B C D {} {} {}

ABCD

- Use monitoring lattice (a prefix-tree lattice structure)
- A node in a monitoring lattice contains an item and it denotes an itemset composed of items that are in the nodes of its path from the root.

Count Estimation of an Itemset (Definitions)

- For an *n*-itemset $e(n \ge 2)$:
 - A set of its subsets P(e) is composed of all possible itemsets that can be generated by one or more items of the itemset e P(e)={α| ∀α s.t. α∈2^e-{e} and α≠Ø}.
 - A set of its *m*-subsets P_m(e) is composed of those itemsets in P(e) that have *m* items (*m*<*n*)
 P_m(e) = {α| ∀α s.t.α∈P(e) and |α|=m}
 - A set of *counts for its m-subsets* $P_m^c(e)$ is composed of the distinct counts of all itemsets in $P_m(e)$ $P_m^C(e) = \{C(\alpha) \mid \forall \alpha \text{ s.t. } \alpha \in P_m(e) \}$ *C(e) denotes the count of an itemset e over a data stream.*
- For two itemsets e₁and e₂
 - A union-itemset e₁U e₂ is composed of all items that are members of either e₁ or e₂
 - An *intersection-itemset* $e_1 \cap e_2$ is composed of all items that are members of both e_1 and e_2 .

Count Estimation of an Itemset (Observations)

- Observation:
 - The count of an itemset depends on how often its items appear together in each transaction.
- The possible range of the count of an itemset identified by two extreme distributions
 - · LED: least exclusively distributed
 - items appear together in as many transactions as possible.
 - MED: most exclusively distributed
 - items appear exclusively as many transactions as possible.

Count Estimation of an Itemset (Estimation)

- Estimate the maximum count $C^{max}(e)$
- Fact:
 - If all of e's subsets are LED, then $C^{max}(e)$ =smallest value among the counts of its subsets
- Estimation:
 - Use (n-1)-subsets to estimate $C^{max}(e)$
 - $C^{max}(e) = \min(P_{n-1}^{C}(e))$ The set of counts for its (n-1)-subsets

Count Estimation of an Itemset (Estimation)

- The maximum count $C^{max}(e)$ of an itemset e is used as the estimated count of the itemset
- The difference between $C^{max}(e)$ and $C^{min}(e)$ be the estimation error E(e) of the itemset

estDec Method (Basic Idea)

- An itemset which has much less support than a predefined minimum support is not necessarily monitored
- The insertion of a new itemset can be delayed until it can possibly be a frequent itemset in the near future.
- When the estimated support of a new itemset is large enough, it is regarded as a *significant itemset* and it is inserted to a monitoring lattice
- If current support of a itemset becomes much less than a predefined minimum support, it can be eliminated from the monitoring lattice.

estDec Method (Notations)

- Every node in a monitoring lattice maintains a triple (*cnt, err, MRtid*) for a corresponding itemset e.
 - cnt:The **count** of the itemset e
 - err:The *maximum error count* of the itemset e
 - MRtid: the transaction identifier of the most recent transaction that contains the itemset e

estDec Method (Algorithm Outline)

- Process unit: transaction
- · Four phases:
 - I. Parameter updating phase
 - II. Count updating phase
 - III. Delayed-insertion phase
 - IV. Frequent item selection phase

estDec Method (Phase I. Parameter Updating)

• Update the total number of transactions in the current data stream $|D|_k$

• $|D|_k = |D|_{k-1} \times d + 1$

estDec Method (Phase II. Count Updating)

- Update the counts of those itemsets in a monitoring lattice that appear in the new transaction.
- Previous triple: (cnt_{pre}, err_{pre}, MRtid_{pre})
- Update triple: (*cnt_k*, *err_k*, *MRtid_k*)
 - $cnt_k = cnt_{pre} \times d^{(k-MRtid_{pre})} + 1$
 - $err_k = err_{pre} \times d^{(k-MRtid_{pre})}$
 - $MRtid_k = k$
- Pruning: if $\frac{cnt_k}{|D|_k} < S_{prn}$
 - Exception: I-itemset will not be pruned, since we need the count for estimations.
 - S_{prn} : threshold for pruning. ($S_{prn} < S_{min}$, S_{min} : minimum support)

 $C^{max}(e) = \min(P_{n-1}^{C}(e))$

estDec Method (Phase III. Delayed-insertion)

- When to insert ?
- A new I-itemset
 - inserted to a monitoring lattice without any estimation process.
- Estimated support of an *n*-itemset > S_{ins} (*n*≥2, not monitored before)
 - Use estimated value C^{max}(e)
 - If any of its (|e|-1)-subsets in $P_{n-1}(e)$ is not monitored, $C^{max}(e) = 0$, stop estimation.
 - S_{ins} : threshold for delayed-insertion ($S_{ins} > S_{min}$)
- cnt: $C^{max}(e) = \min(P_{n-1}^{C}(e))$
- Can we estimate cnt using other information?

estDec Method (Phase III. Delayed-insertion)

- When an itemset e is inserted, all of its (|e|-1)-subsets should be monitored in advance.
 - The actual count is maximized when these |e|-1 transactions are most recently generated.
 - The decayed count of the itemset e for the insertion of its subsets by these recent |e|-1 transactions:
 cntt_for_subsets = d|e|-1+d|e|-2 + ...+d+1={1-d(|e|-1)}/(1-d)
 - The maximum possible decayed count of the itemset e before the recent |e|-1 transactions:
 - max_cnt_before_subsets = $S_{ins} * \{|D|_{k-(|e|-1)}\} * d^{(e-1)}$
 - Thus, the upper bound of its actual count:
 - C^{upper}(e) = max_cnt_before_subsets+cnt_for_subsets
- Update the inserted triple: (cnt_k, err_k, MRtid_k)
 - cnt_k = min{C^{max}(e), C^{upper}(e)}
 - $\operatorname{err}_{k} = E(e) = \operatorname{cnt}_{k} C^{\min}(e)$
 - $MRtid_k = k$

estDec Method (Phase IV. Selection)

- · Performed only when the mining result of the current data set is required
- an itemset e is frequent if its current support S is greater than minimum support Smin.
 - $S = \{cnt \times d^{(k MRtid)}\} / |D|_{k}$
 - Current support error $E = \{err \times d^{(k MRtid)}\} / |D|_k$

 $L_k = \emptyset;$ for all itemset $e \in ML$ { $cnt = cnt \times d^{(k-MRtid)}$; $err = err \times d^{(k-MRtid)}$; MRtid = k; if $(cnt/|D|_k) \ge S_{min}$ $L_k = L_k \cup \{e\};$

estDec Method (cont'd)

force-pruning

- All insignificant itemsets can be pruned together by examining the current support of every itemset in the monitoring lattice.
- Can be done periodically

Experiments (Environment)

- Two generated dataset:
 - TI0.14.DI000K
 - T5.14.D1000K-AB
- Environment
 - 1.8GHz Pentium PC machine
 - 512MB main memory
 - Linux 7.3
 - All programs are implemented in C

19

Conclusion

- Proposed estDec method
 - Finds recent frequent itemsets over an online data stream
 - Decay the weight of old transactions as time goes by.
- Advantages
 - The recent change of information in a data stream can be *adaptively* reflected to the current mining result
 - The weight of information in a transaction of a data stream is gradually reduced as time goes by
 - The reduction rate can be flexibly controlled.
 - No transaction needs to be maintained physically
- Disadvantages
 - Parameters are hard to determine: Smin, Sprn, Sins, b, h

Thanks	5		
		Q&A	