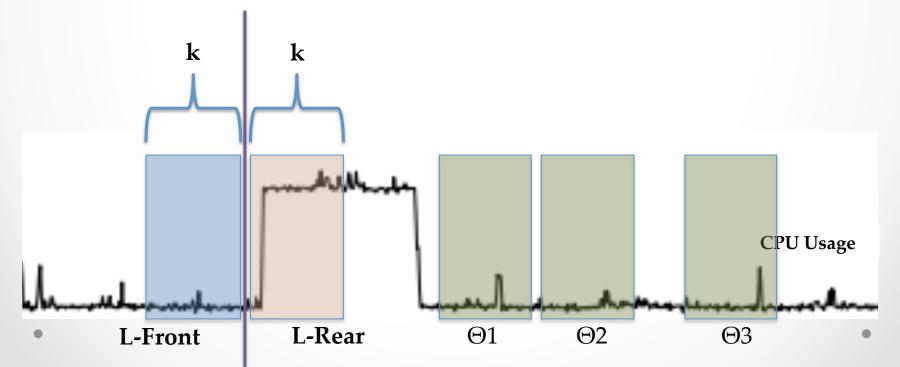

Correlating Events with Time Series for Incident Diagnosis Ricardo Reimao

Idea: Identifying Patterns in Series and Events

Problem!

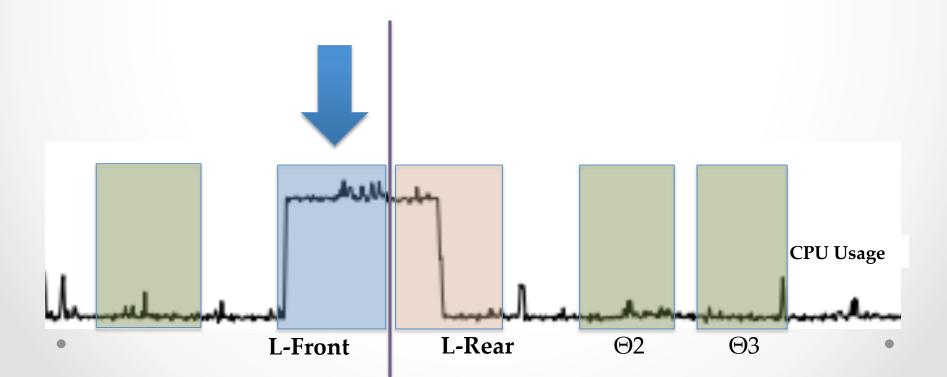
- How to correlate events with temporal series?
- How to identify anomalous behavior?
- How to predict incident causes?

Series 1: CPU Usage Series 2: Memory Usage Event Series: Windows logs

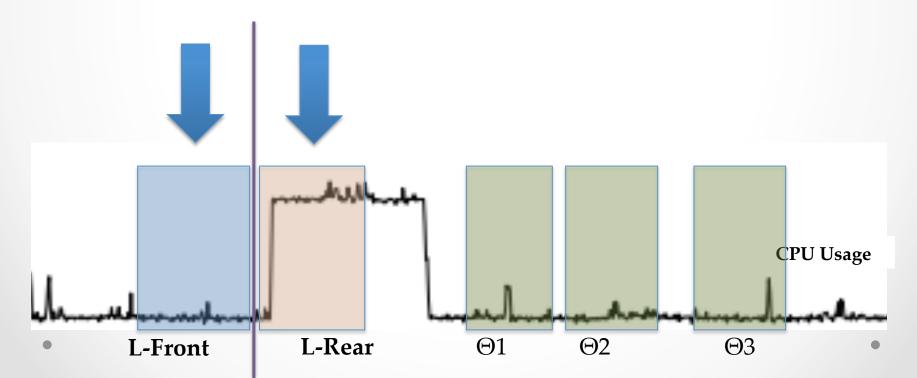

Formalizing the Problem

Three Main Questions

- Existence Dependency
 - "Is there a correlation between the event sequence and the time series?"
 - "Does opening powerpoint affect my CPU usage?"
- Temporal Order of Dependency
 - "Does X influences in Y? Or Y influences in X?"
 - "The powerpoint freezes because the memory usage is high? Or the memory usage is high because the powerpoint is frozen?"
- Monotonic Effect of Dependency
 - "Does the event impact negatively or positively on the measure?"
 - "When I open powerpoint, does the memory usage increases or decreases?"


Subset definitions

- L-Front: The sub-series BEFORE the event
- L-Rear: The sub-series AFTER the event
- Θ : A set of random sub-series
- k: Size of the sub-sets


Definition 1

• "An event sequence E and a time Series S are correlated and E often occurs **after** changes of S (S > E) if and only if the probabilistic distribution L-Front is statistically different from the randomly sampled Θ .

Definition 2

• "An event sequence E and a time series S are correlated and E often occurs **before** the changes of S (E > S), if and only if the probabilistic distribution of L-Rear is statistically different from the randomly sampled sub-series Θ and the probabilistic distribution of L-Front is not statistically different from Θ ."

Definition 3

An event sequence E and a time series S are correlated (E ~ S) if there is a relationship such as E > S or S > E

Definition 4

If E > S (or S > E) and the event occurrences of E are related to significant value increases of S, we denote the correlation as E +> S.
If S decreases, we denote the correlation as: E -> S

Challenge: How to test if L-Rear are statistically similar to Θ ?

Approach: Two Sample Problem

What is Two Sample Problem?

- Multivariate two-sample hypothesis-testing problem
- Objective: Identify if two samples are from the same distribution
- In our context:
 - \circ Check if L-Rear and Θ are from the same distribution
 - \circ Check if L-Front and Θ are from the same distribution
- Two Hypothesis:
 - $H_0: S = \Theta$ (The series and Θ are from the same distribution, or in other words, S and Θ are <u>statistically equal</u>)
 - o $H_1: S \neq \Theta$ (The series and Θ are from different distributions, or in other words, S and Θ are <u>statistically different</u>)

How to check? Nearest Neighbor!

- Why?
- Verify the distance between an item and items in a database
- Process:
 - Generate the subset of L-Front/L-Rear
 - \circ Generate the subset of Θ
 - \circ Concatenate L-Front/L-Rear and Θ (this becomes the DB)
 - Whenever a new item A (event + L-Front + L-Rear) is tested:
 - Use k-NN to check which item is more similar to A
 - If the closest item is an item of Θ , then there's no correlation
 - Else, the item may be correlation

Monotonicity Check

 To check the monotonic effect, a new artifact is introduced: t_{score}

$$t_{score} = \frac{\mu_{\Gamma front} - \mu_{\Gamma rear}}{\sqrt{\frac{(n_1 - 1)\sigma_{\Gamma front}^2 + (n_2 - 1)\sigma_{\Gamma rear}^2}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} - \frac{1}{n_2}\right)}$$

- Idea: Measure "how big is the impact" of E in S.
- If t_{score} is higher than a threshold, then: E +> S
- If t_{score} is lower than a threshold, then: E -> S

Algorithm

Inputs/Outputs

- Input:
 - Event vector $E = (e_1, e_2, ..., e_n)$
 - Time Series $S = (s_1, s_2, ..., s_m)$
 - o Subseries length k
- Output:
 - Correlation flag C
 - Correlation direction D
 - Effect type t
- Important: 'k' (subseries length) and n (number of knn neighbours to evaluate) have high impact on performance!

General Idea

- Test L-Front and Θ
- Test L-Rear and Θ
- If correlation is found:
 - \circ Verify t_{score} to identify direction
 - o Return

Algorithm 1: The Overall Algorithm Input: Event $E = (e_1, e_2, ..., e_n)$, and Time Series $S = (s_1, s_2, ..., s_m)$, and the sub-series length k. Output: The correlation flag C, the direction D, and the effect type T Initialize Γ^{front} and Γ^{rear}; 2 Initialize Θ: 3 Initialize R = false, D = NULL, T = NULL; 4 Normalize each ℓ^{front}_k(S, e_i) and ℓ^{rear}_k(S, e_i).; 5 Test Γ^{front} and Θ using Nearest Neighbors Method. The result is denoted as D_{f} . 6 Test Γ^{rear} and Θ using Nearest Neighbors Method. The result is denoted as D_{τ} . 7 if $(D_r == true\&\&D_f == false)$ then 8 R = true. 9 Calculate t_{score} using Equation (8).; 10if $(t_{score} > \alpha)$ then $T = E \rightarrow S$. 11 12 else if $(t_{score} < -\alpha)$ then $T = E \xrightarrow{+} S.;$ 13 14 else if $(D_r == false\&\&D_f == true) \parallel$ $(D_r == true\&\&D_f == true)$ then 15R = true. Calculate t_{score} using Equation (8).; 1617 if $(t_{score} > \alpha)$ then $\mathbf{18}$. $T = S \rightarrow E_{\cdot};$ else if $(t_{score} < -\alpha)$ then 19 $T = S \xrightarrow{+} E_{\cdot};$ $\mathbf{20}$ **21** Out put R, D and T; 22 Algorithm End.

Empirical Evaluation

 \bullet \bullet \bullet

Previous Works

- Pearson Correlation
 - One of the most used methods for measuring correlation between <u>two time series</u>
 - Cannot be directly used to correlate event and series data
 - Need to transform event data into a serie
- J-measure Correlation
 - One of the most used methods for measuring correlation between <u>event data</u>
 - Cannot be directly used to correlate event and series data
 - Need to transform series into event data

Tests in a Controlled Environment

Table 2. Results of the data from controlled environment											
Name	Proposed Method			Pearson Correlation			J-Measure				
	CPU	Memory	Disk	CPU	Memory	Disk	CPU	Memory	Disk		
CPU Intensive Program	+	NC	NC	۲+	NC ¹	NC	NC	2	٢		
Memory Intensive Program	⁺ →	+	NC	NC	+2	NC	NC	2	2		
Disk Intensive Program	NC	NC	$\xrightarrow{+}$	NC	NC	+2	NC	~	2		
Query Alert	÷	+	NC	+2	NC	NC	NC	~	2		

Table 2: Results of the data from controlled environment

- Person did not capture some correlations

- Person does not give you the direction of the correlation
- J-Measure did not identify correlation in one whole series

Tests in Real-World Environments

Evaluation Metric:

2 * TruePositive

 $F_{1} = \frac{1}{2 * TruePositive + FalseNegative + FalsePositive}$

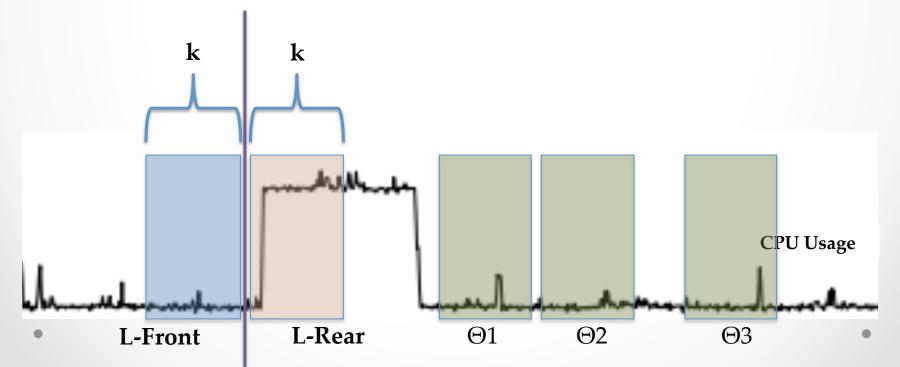

Table 3: Result in real data set									
Data Set	Methods	Existence	Temporal Order	Effect Type					
Data Set	Methods	F_1 Score	F_1 Score	F_1 Score					
System Monitoring Data	Correlation Mining (L1)	0.7916	0.8020	0.8016					
	Correlation Mining (L2)	0.8205	0.7612	0.8780					
	Correlation Mining (DTW)	0.7962	0.8021	0.8210					
	Pearson Correlation	0.6974	N/A ²	0.6732					
	J-Measure	0.6148	N/A	N/A					
Custom Support Data	Correlation Mining (L1)	0.7915	0.7659	0.7204					
	Correlation Mining (L2)	0.8423	0.7870	0.8334					
	Correlation Mining (DTW)	0.8631	0.8205	0.8532					
	Pearson Correlation	0.6030	N/A	0.6501					
	J-Measure	0.7398	N/A	N/A					

Table 3: Result in real data set

Concept Summary

- L-Front: The sub-series BEFORE the event
- L-Rear: The sub-series AFTER the event
- Θ : A set of random sub-series
- k: Size of the sub-sets

Process

Pros | Cons

Correlate time series and event data

Utilizes a slow-search method: Nearest Neighbors

Identify not only correlation, but also direction and monotonicity

Can be applied against multiple time series

More effective then previous works (Pearson and J-Measure)

Does not consider the event combination problem

Ricardo Reimao