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Introduction

» Many machine learning algorithms require the input to be

represented as a fixed-length feature vector.

» When it comes to texts, one of the most common fixed-length

features is bag-of-words.
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Bag of Words Disadvantages

» The word order is lost, and thus different sentences can have
exactly the same representation, as long as the same words are
used.

» Even though bag-of-n-grams considers the word order in short
context, it suffers from data sparsity and high dimensionality.

» Bag-of-words and bag-of-n-grams have very little sense about
the semantics of the words or more formally the distances
between the words. (powerful, Paris, strong)
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Word Embedding
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Proposed Method

» Distributed Representations of Sentences and Documents model
was proposed.

» Paragraph Vector, an unsupervised algorithm that learns fixed-
length feature representations from variable-length pieces of
texts.

» Proposed algorithm represents each document by a dense vector
which is trained to predict words in the document.
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Learning Vector Representation of Words

» The task is to predict a word given the other words in a
context.
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Paragraph Vector: A distributed memory
model (PV-DM)

» Paragraph vectors are used for
prediction | on |

» Every paragraph is mapped to a
unique vector. omm

» Every word is also mapped to a OIIIN [pm OO0O0 OO0
unique vector t
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Paragraph Vector: A distributed memory
model (PV-DM)

» The contexts are sampled from a
sliding window over paragraph | on |

» Paragraph vector is shared across
all contexts from the same

I
paragraph. P AN
» Word vectors are shared across LI I:!:l:lil:l:l:l ﬂIlItEED EEIZliIIEI
paragraphs * |W l ]W | |W |
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Advantages over BOW

= Semantics of the words. In this space, “powerful” is closer
to “strong” than to “Paris”

= Take into consideration the word order.
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Paragraph Vector Distributed Bag of Words
(PV-DBOW)

» In this version, the paragraph vector is trained to predict
the words in a small window.
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Experiment

» Each paragraph vector is a combination of two vectors: one
learned by PV-DM and one learned by PV-DBOW.

» Sentiment Analysis.
» Stanford sentiment treebank

» 11855 sentences
» IMDB 4

» 100000 movie reviews > ' . ‘

» Information Retrieval - /
)




Stanford sentiment treebank

Learn the representations for all the sentences

The paragraph vector is the concatenation of two vectors

from PV-DBOW and PV-DM

Logistic Regression was used for prediction

Every sentence has label which goes from 0.0 to 1.0
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Stanford sentiment treebank
Model Error rate | Error rate
(Positive/ (Fine-
Negative) grained)
Naive Bayes 18.2 % 59.0%
(Socher et al., 2013b)
SVMs (Socher et al., 2013b) 20.6% 59.3%
Bigram Naive Bayes 16.9% 58.1%
(Socher et al., 2013b)
Word Vector Averaging 19.9% 67.3%
(Socher et al., 2013b)
Recursive Neural Network 17.6% 56.8%
(Socher et al., 2013b)
Matrix Vector-RNN 17.1% 55.6%
(Socheret al., 2013b)
Recursive Neural Tensor Network 14.6% 54.3%
(Socher et al., 2013b)
Paragraph Vector 12.2% 51.3%
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IMDB

» Using Neural Networks and Logistic Regression for
prediction

» The paragraph vector is the concatenation of two vectors
from PV-DBOW and PV-DM

173
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IMDB
Model Error rate
BoW (bnc) (Maas et al., 2011) 12.20 %
BoW (bAt’c) (Maas et al., 2011) 11.77%
LDA (Maas et al., 2011) 32.58%
Full+BoW (Maas et al.. 2011) 11.67%
Full+Unlabeled+BoW (Maas et al., 2011) 11.11%
WRRBM (Dahl et al.. 2012) 12.58%
WRRBM + BoW (bnc) (Dahl et al., 2012) 10.77%
MNB-uni (Wang & Manning, 2012) 16.45%
MNB-bi (Wang & Manning, 2012) 13.41%
SVM-uni (Wang & Manning, 2012) 13.05%
SVM-bi (Wang & Manning, 2012) 10.84%
NBSVM-uni (Wang & Manning, 2012) 11.71%
NBSVM-bi (Wang & Manning, 2012) 8.78%
Paragraph Vector 7.42%
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W

2017-11-27



Information Retrieval

» calls from ( 000 ) 000 - 0000 . 3913 calls reported from this number .
according to 4 reports the identity of this caller is american airlines .

» do you want to find out who called you from +1 000 - 000 - 0000 , +1
0000000000 or ( 000) 000 - 0000 ? see reports and share information
you have about this caller

» allina health clinic patients for your convenience , you can pay your
allina health clinic bill online . pay your clinic bill now , question and

answers...
Model Error rate
Vector Averaging 10.25%
Bag-of-words 8.10 %
Bag-of-bigrams 7.28 %
Weighted Bag-of-bigrams 5.67%
Paragraph Vector 3.82% YO R K
19
Observations

» PV-DM is consistently better than PV-DBOW
» PV-DM alone can achieve good results

» The combination of PV-DM and PV-DOW can gain best
results.

» A good guess for window size is between 5 and 12.

» The proposed method must be run in parallel.
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Advantages and Disadvantages

» The proposed method is competitive with state-of-the-art methods.

» The good performance demonstrates the merits of Paragraph vector
in capturing the semantics of paragraphs.

» It is scalable (sentences, paragraphs, and documents).
» Paragraph vectors have the potential to overcome many weaknesses

Ofbag-Of-WOI‘dS (WOI‘d OrderS, WOI‘d Ineaning, .. )
e

» Paragraph vector can be expensive.

» Too many parameters. ; L

» If the input corpus is one with lots of misspellings like tweets, this
algorithm may not be a good choice YORKQI
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Slide 23

vh2 One hot encoding technique is used to encode categorical integer features using a one-hot aka
one-of-K scheme.

Suppose you have ‘color’ feature which can take values ‘green’, ‘red’, and ‘blue’. One hot encoding will
convert this ‘color’ feature to three features, namely, ‘is_green’, ‘is_red’, and ‘is_blue’ which all are binary.
vagelis hristidis, 2016-11-06
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