Distributed Representations of Sentences and Documents

QUOC LE,TOMASMIKOLOV

PRESENTERS:
AMIN and AL
YORK U

Outline

- Introduction
- Algorithm

Learning Vector Representation of Words
Paragraph Vector: A distributed memory model
Paragraph Vector without word ordering: Distributed bag of words

- Experiments
- Conclusion
- Demo

YORK U
หッำ.!?!
2

Introduction

- Many machine learning algorithms require the input to be represented as a fixed-length feature vector.
- When it comes to texts, one of the most common fixed-length features is bag-of-words.

YORK U
\% \%ivitill

Bag of Words Disa dva nta ges

- The word order is lost, and thus different sentences can have exactly the same representation, as long as the same words are used.
- Even though bag-of-n-grams considers the word order in short context, it suffers from data sparsity and high dimensionality.
- Bag-of-words and bag-of-n-grams have very little sense about the semantics of the words or more formally the distances between the words. (powerful, Paris, strong)

YORK U
\%"ㄴำใ! U

Word Embedding

Male-Female

Verb tense

YORK U
\% \% Mintin

Proposed Method

- Distributed Representations of Sentences and Documents model was proposed.
- Paragraph Vector, an unsupervised algorithm that learns fixedlength feature representations from variable-length pieces of texts.
- Proposed algorithm represents each document by a dense vector which is trained to predict words in the document.

YORK【
8

Leaming Vector Representation of Words

- The task is to predict a word given the other words in a context.

$$
\frac{1}{T} \sum_{t=k}^{T-k} \log p\left(w_{t} \mid w_{t-k}, \ldots, w_{t+k}\right)
$$

$$
p\left(w_{t} \mid w_{t-k}, \ldots, w_{t+k}\right)=\frac{e^{y_{w_{t}}}}{\sum_{i} e^{y_{i}}}
$$

Paragraph Vector: A distributed memory

 model (PV-DM)- Paragraph vectors are used for prediction
- Every paragraph is mapped to a unique vector.
- Every word is also mapped to a unique vector

YORK U

Paragraph Vector: A distributed memory model (PV-DM)

- The contexts are sampled from a sliding window over paragraph
- Paragraph vector is shared across all contexts from the same paragraph.
- Word vectors are shared across paragraphs

YORK U
 \% \% Mintive

Advanta ges over BOW

- Semantics of the words. In this space, "powerful" is closer to "strong" than to "Paris"
- Take into consideration the word order.

Paragraph Vector Distributed Bag of Words (PV-DBOW)

- In this version, the paragraph vector is trained to predict the words in a small window.

Experiment

- Each paragraph vector is a combination of two vectors: one learned by PV-DM and one learned by PV-DBOW.
- Sentiment Analysis.
- Stanford sentiment treebank
- 11855 sentences
- IMDB
- 100000 movie reviews
- Information Retrieval

Sta nford sentiment treeba nk

- Learn the representations for all the sentences
- The paragraph vector is the concatenation of two vectors from PV-DBOW and PV-DM
- Logistic Regression was used for prediction
- Every sentence has label which goes from 0.0 to 1.0

YORK U \%N.tint

Sta nford sentiment treeba nk

Model	Error rate (Positive Negative)	Error rate (Fine- grained)
Naïve Bayes (Socher et al., 2013b)	18.2%	59.0%
SVMs (Socher et al., 2013b)	20.6%	59.3%
Bigram Naïve Bayes (Socher et al., 2013b)	16.9%	58.1%
Word Vector Averaging (Socher et al., 2013b)	19.9%	67.3%
Recursive Neural Network (Socher et al., 2013b)	17.6%	56.8%
Matrix Vector-RNN (Socher et al., 2013b)	17.1%	55.6%
Recursive Neural Tensor Network (Socher et al., 2013b)	14.6%	54.3%
Paragraph Vector	$\mathbf{1 2 . 2 \%}$	$\mathbf{5 1 . 3 \%}$

YORK หッㄴำ.

IMDB

- Using Neural Networks and Logistic Regression for prediction
- The paragraph vector is the concatenation of two vectors from PV-DBOW and PV-DM

17

Information Retrieval

- calls from (000) 000-0000. 3913 calls reported from this number . according to 4 reports the identity of this caller is american airlines .
- do you want to find out who called you from +1 1000-000-0000,+1 0000000000 or (000) 000-0000? see reports and share information you have about this caller
- allina health clinic patients for your convenience, you can pay your allina health clinic bill online . pay your clinic bill now, question and answers...

Model	Error rate
Vector Averaging	10.25%
Bag-of-words	8.10%
Bag-of-bigrams	7.28%
Weighted Bag-of-bigrams	5.67%
Paragraph Vector	$\mathbf{3 . 8 2 \%}$

YORK U
19
UNivensitit

Observations

- PV-DM is consistently better than PV-DBOW
- PV-DM alone can achieve good results
- The combination of PV-DM and PV-DOW can gain best results.
- A good guess for window size is between 5 and 12 .
- The proposed method must be run in parallel.

YORK

20

Advantages and Disadvantages

- The proposed method is competitive with state-of-the-art methods.
- The good performance demonstrates the merits of Paragraph vector in capturing the semantics of paragraphs.
- It is scalable (sentences, paragraphs, and documents).
- Paragraph vectors have the potential to overcome many weaknesses of bag-of-words (word orders, word meaning, ...)
- Paragraph vector can be expensive.
- Too many parameters.

- If the input corpus is one with lots of misspellings like tweets, this algorithm may not be a good choice

vh2 One hot encoding technique is used to encode categorical integer features using a one-hot aka one-of-K scheme.

Suppose you have 'color' feature which can take values 'green', 'red', and 'blue'. One hot encoding will convert this 'color' feature to three features, namely, 'is_green', 'is_red', and 'is_blue' which all are binary. vagelis hristidis, 2016-11-06

