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Introduction

▶ Many machine learning algorithms require the input to be 
represented as a fixed-length feature vector.

▶ When it comes to texts, one of the most common fixed-length 
features is bag-of-words. 
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Bag of Words
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Bag of Words Disadvantages

▶ The word order is lost, and thus different sentences can have 
exactly the same representation, as long as the same words are 
used.

▶ Even though bag-of-n-grams considers the word order in short 
context, it suffers from data sparsity and high dimensionality.

▶ Bag-of-words and bag-of-n-grams have very little sense about 
the semantics of the words or more formally the distances 
between the words. (powerful, Paris, strong)
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Word Embedding
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Word Embedding
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Proposed Method

▶ Distributed Representations of Sentences and Documents model 
was proposed.

▶ Paragraph Vector, an unsupervised algorithm that learns fixed-
length feature representations from variable-length pieces of 
texts.

▶ Proposed algorithm represents each document by a dense vector 
which is trained to predict words in the document.
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Learning Vector Representation of Words

▶ The task is to predict a word given the other words in a 
context.
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Paragraph Vector: A distributed memory 
model (PV-DM)
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▶ Paragraph vectors are used for 
prediction

▶ Every paragraph is mapped to a 
unique vector.

▶ Every word is also mapped to a 
unique vector



2017-11-27

6

Paragraph Vector: A distributed memory 
model (PV-DM)

▶ The contexts are sampled from a 
sliding window over paragraph

▶ Paragraph vector is shared across 
all contexts from the same 
paragraph.

▶ Word vectors are shared across 
paragraphs
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Advantages over BOW

 Semantics of the words. In this space, “powerful” is closer 
to “strong” than to “Paris”

 Take into consideration the word order.
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Paragraph Vector Distributed Bag of Words 
(PV-DBOW)

▶ In this version, the paragraph vector is trained to predict 
the words in a small window.
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Experiment

▶ Each paragraph vector is a combination of two vectors: one 
learned by PV-DM and one learned by PV-DBOW.

▶ Sentiment Analysis.
▶ Stanford sentiment treebank 

▶ 11855 sentences

▶ IMDB
▶ 100000 movie reviews

▶ Information Retrieval
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Stanford sentiment treebank 

▶ Learn the representations for all the sentences

▶ The paragraph vector is the concatenation of two vectors 
from PV-DBOW and PV-DM

▶ Logistic Regression was used for prediction

▶ Every sentence has label which goes from 0.0 to 1.0
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Stanford sentiment treebank 

16



2017-11-27

9

IMDB

▶ Using Neural Networks and Logistic Regression for 
prediction

▶ The paragraph vector is the concatenation of two vectors 
from PV-DBOW and PV-DM
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IMDB
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Information Retrieval

▶ calls from ( 000 ) 000 - 0000 . 3913 calls reported from this number . 
according to 4 reports the identity of this caller is american airlines .

▶ do you want to find out who called you from +1 000 - 000 - 0000 , +1 
0000000000 or ( 000) 000 - 0000 ? see reports and share information 
you have about this caller

▶ allina health clinic patients for your convenience , you can pay your 
allina health clinic bill online . pay your clinic bill now , question and 
answers...

19

Observations

▶ PV-DM is consistently better than PV-DBOW

▶ PV-DM alone can achieve good results

▶ The combination of PV-DM and PV-DOW can gain best 
results.

▶ A good guess for window size is between 5 and 12.

▶ The proposed method must be run in parallel.
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Advantages and Disadvantages

▶ The proposed method is competitive with state-of-the-art methods.

▶ The good performance demonstrates the merits of Paragraph vector
in capturing the semantics of paragraphs.

▶ It is scalable (sentences, paragraphs, and documents).

▶ Paragraph vectors have the potential to overcome many weaknesses
of bag-of-words (word orders, word meaning, …)

▶ Paragraph vector can be expensive. 

▶ Too many parameters.

▶ If the input corpus is one with lots of misspellings like tweets, this 
algorithm may not be a good choice

21

Demo
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vh2 One hot encoding technique is used to encode categorical integer features using a one-hot aka 
one-of-K scheme.

Suppose you have ‘color’ feature which can take values ‘green’, ‘red’, and ‘blue’. One hot encoding will 
convert this ‘color’ feature to three features, namely, ‘is_green’, ‘is_red’, and ‘is_blue’ which all are binary.
vagelis hristidis, 2016-11-06
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Contain word’s vectors

We can consider either W or W’ as the word’s representation. Or even take the 
average.


