

Bag of Words Disadvantages

- The word order is lost, and thus different sentences can have exactly the same representation, as long as the same words are used.
- Even though bag-of-n-grams considers the word order in short context, it suffers from data sparsity and high dimensionality.
- Bag-of-words and bag-of-n-grams have very little sense about the semantics of the words or more formally the distances between the words. (powerful, Paris, strong)

5

YORK

5

Stanfo	ord sontimont trooba	nk		
Stanic	nd sentiment treepa			
	Model	Error rate (Positive/ Negative)	Error rate (Fine- grained)	
	Naïve Bayes	18.2 %	59.0%	
	(Socher et al., 2013b) SVMs (Socher et al. 2013b)	20.6%	50.3%	
	Bigram Naïve Bayes (Socher et al., 2013b)	16.9%	58.1%	
	Word Vector Averaging (Socher et al., 2013b)	19.9%	67.3%	
	Recursive Neural Network (Socher et al., 2013b)	17.6%	56.8%	
	Matrix Vector-RNN (Socher et al., 2013b)	17.1%	55.6%	
	Recursive Neural Tensor Network (Socher et al., 2013b)	14.6%	54.3%	
	Paragraph Vector	12.2%	51.3%	
16			Y UN V	

Model	Error rate]
BoW (bnc) (Maas et al., 2011)	12.20 %	-
BoW ($b\Delta t$ 'c) (Maas et al., 2011)	11.77%	
LDA (Maas et al., 2011)	32.58%	
Full+BoW (Maas et al., 2011)	11.67%	
Full+Unlabeled+BoW (Maas et al., 2011)	11.11%	
WRRBM (Dahl et al., 2012)	12.58%	
WRRBM + BoW (bnc) (Dahl et al., 2012)	10.77%	
MNB-uni (Wang & Manning, 2012)	16.45%]
MNB-bi (Wang & Manning, 2012)	13.41%	
SVM-uni (Wang & Manning, 2012)	13.05%	
SVM-bi (Wang & Manning, 2012)	10.84%	
NBSVM-uni (Wang & Manning, 2012)	11.71%	
NBSVM-bi (Wang & Manning, 2012)	8.78%	
Paragraph Vector	7.42%	
		YORK
	Ŭ	JNIVERSITE JNIVERSITY

2017-11-27

vh2 One hot encoding technique is used to encode categorical integer features using a one-hot aka one-of-K scheme.

Suppose you have 'color' feature which can take values 'green', 'red', and 'blue'. One hot encoding will convert this 'color' feature to three features, namely, 'is_green', 'is_red', and 'is_blue' which all are binary. vagelis hristidis, 2016-11-06

2017-11-27

