
Anomaly Detection with Robust Deep Autoencoders
Chong Zhou

Worcester Polytechnic Institute
100 Institute Road

Worcester, MA 01609
czhou2@wpi.edu

Randy C. Pa�enroth
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609
rcpa�enroth@wpi.edu

ABSTRACT
Deep autoencoders, and other deep neural networks, have demon-
strated their e�ectiveness in discovering non-linear features across
many problem domains. However, in many real-world problems,
large outliers and pervasive noise are commonplace, and one may
not have access to clean training data as required by standard deep
denoising autoencoders. Herein, we demonstrate novel extensions
to deep autoencoders which not only maintain a deep autoencoders’
ability to discover high quality, non-linear features but can also
eliminate outliers and noise without access to any clean training
data. Our model is inspired by Robust Principal Component Anal-
ysis, and we split the input data X into two parts, X = LD + S ,
where LD can be e�ectively reconstructed by a deep autoencoder
and S contains the outliers and noise in the original data X . Since
such spli�ing increases the robustness of standard deep autoen-
coders, we name our model a “Robust Deep Autoencoder (RDA)”.
Further, we present generalizations of our results to grouped spar-
sity norms which allow one to distinguish random anomalies from
other types of structured corruptions, such as a collection of fea-
tures being corrupted across many instances or a collection of
instances having more corruptions than their fellows. Such “Group
Robust Deep Autoencoders (GRDA)” give rise to novel anomaly
detection approaches whose superior performance we demonstrate
on a selection of benchmark problems.

KEYWORDS
Autoencoders; Robust Deep Autoencoders; Group Robust Deep
Autoencoder; Denoising; Anomaly Detection

1 INTRODUCTION
Deep learning is part of a broad family of methods for representation
learning [11], and it has been quite successful in pushing forward
the state-of-the-art in multiple areas [9–11, 29]. In particular, herein
we focus on deep autoencoders which construct representations
based on non-linear combinations of input features, and where the
non-linearity is classically introduced by way of some non-linear
activation function [11]. Unfortunately, outliers and noise may

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4887-4/17/08. . .$15.00
DOI: 10.1145/3097983.3098052

reduce the quality of representations discovered by deep autoen-
coders [15, 16]. �ere is a large extent literature which a�empts
to address this challenge and two approaches include denoising
autoencoders and maximum correntropy autoencoders. Denoising
autoencoders [9, 17, 23, 30, 31], require access to a source of clean,
noise-free data for training, and such data is not always readily
available in real-world problems [28]. On the other hand, maximum
correntropy autoencoders replace the reconstruction cost with a
noise-resistant criteria correntropy [22]. However, such a model
still trains the hidden layer of the autoencoder on corrupted data,
and the feature quality of the hidden layer may still be in�uenced
by training data with a large fraction of corruptions.

As we will detail, our model isolates noise and outliers in the
input, and the autoencoder is trained a�er this isolation. �us, our
method promises to provide a representation at the hidden layers
which is more faithful to the true representation of the noise-free
data.

1.1 Contribution
Herein we show how denoising autoencoders can be generalized to
the case where no clean, noise-free data is available, and we demon-
strate the superior performance of our proposed methods using
standard benchmark problems such as the MNIST data set [12]. We
call such algorithms “Robust Deep Autoencoders (RDA)”, and our
proposed models improve upon normal deep autoencoders by intro-
ducing an anomaly regularizing penalty based upon either `1 or `2,1
norms. Using such a regularizing penalty, we derive a training al-
gorithm for the proposed model by combining ideas from proximal
methods [4], backpropagation [24], and the Alternating Direction
of Method of Multipliers (ADMM) [3]. As an interesting conse-
quence of the development of such RDAs, we have also derived a
novel family of unsupervised anomaly detection algorithms. We
demonstrate the e�ectiveness of these anomaly detection algorithm,
as compared to a baseline approach, on a number of challenging
benchmark problems.

In particular, we emphasize that our proposed methods di�er
from standard techniques in two important ways.

• First, our methods di�er from standard denoising autoen-
coders [28] in that they do not require any noise-free train-
ing data. Rather, our methods compute the entries on
which the autoencoder loss function is enforced on-the-�y
based upon the performance of the underlying autoencoder
algorithm.

• Second, our methods di�er from standard sparse autoen-
coders [13] in that we do not penalize the sparsity of the
hidden layer. Rather, our methods allow for a sparse set

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

665

of exceptions to the enforcement of the autoencoder loss
function.

2 BACKGROUND
We begin the derivation of our methods by providing a brief in-
troduction to non-linear feature representation by way of deep
autoencoders. We also present a few foundational ideas from Ro-
bust Principal Component Analysis (RPCA) which are classically
used to construct low-dimensional linear features by �ltering out
outlying measurements using a convex relaxation of the rank oper-
ator [6, 20].

2.1 Deep Autoencoders
A deep autoencoder is a feed-forward multi-layer neural network in
which the desired output is the input itself. Upon �rst glance, this
process may seem trivial since the identity mapping would have no
reconstruction error. However, autoencoders become non-trivial
when the identity map is disallowed either by way of some type
of regularization or, more importantly for the current derivation,
by having hidden layers which are a low-dimensional, non-linear
representation of the input data.

In particular, autoencoders learn a map from the input to itself
through a pair of encoding and decoding phases

X = D (E (X)) (1)
whereX is the input data, E is an encoding map from the input data
to the hidden layer, D is a decoding map from the hidden layer to
the output layer, and X is the recovered version of the input data.
�e idea is to train E and D to minimize the di�erence between X
and X .

In particular, an autoencoder can be viewed as a solution to the
following optimization problems:

min
D,E
‖X − D (E (X))‖ (2)

where ‖ · ‖ is commonly chosen to be the `2-norm.
Usually, an autoencoder with more than one hidden layers is

called a deep autoencoder [11]and each additional hidden layer
requires an additional pair of encoders E (·) and decoders D (·). By
allowing many layers of encoders and decoders, a deep autoencoder
can e�ectively represent complicated distributions over the input
X . In the sequel, our focus will be on deep autoencoders with all
autoencoders assumed to be deep.

2.2 Robust Principal Component Analysis
Robust Principal Component Analysis (RPCA) [6, 7, 20] is a gener-
alization of Principal Component Analysis (PCA) [8] that a�empts
to reduce the sensitivity of PCA to outliers. In particular, RPCA
allows for the careful teasing apart of sparse outliers so that the
remaining low-dimensional approximation is faithful to the noise-
free low-dimensional subspace describing the bulk of the raw data
[6, 7, 20].

Speci�cally, RPCA splits a data matrix X into a low-rank matrix
L and a sparse matrix S such that

X = L + S . (3)

�e matrix L contains a low-dimensional representation of X [6, 7,
20] and the matrix S consists of element-wise outliers, which can
not be e�ciently captured by the low-dimensional representation
L.

Naively, this matrix decomposition can be computed by way of
the following optimization problem [6, 7]

min
L,S

ρ (L) + λ | |S | |0

s.t. ‖X − L − S ‖2F = 0,
(4)

where ρ (L) is the rank of L, | |S | |0 is the number of non-zero entries
in S , and ‖ · ‖F is the Frobenius norm. However, the non-convex
optimization (4) is NP-hard [6, 7] and only computationally tractable
for small matrices X . However, there is a large literature [6, 7, 20]
on convex relaxations of this class of problems, such as

min
L,S
| |L| |∗ + λ | |S | |1

s.t. ‖X − L − S ‖2F = 0,
(5)

where the | | · | |∗ is the nuclear norm (i.e., the sum of the singular
values of the matrix) and | | · | |1 is the one norm (i.e., the sum of the
absolute values of the entries).

While optimization (4) is NP-hard, optimization (5) is convex
and can be solved for large data matrices X . With this idea, the
key insight of our method can be succinctly described. It is well
known [10] that, when one considers a Frobenius loss function and
constrains the autoencoder D and E (2) to be linear maps, that PCA
is an optimal autoencoder. Accordingly, our method can be viewed as
replacing the nuclear norm in (5), which results in a linear projection
to a low-dimensional hidden layer, with a non-linear autoencoder,
which results in a non-linear projection to a low-dimensional hidden
layer.

Of course, one must therefore solve (5) but with a more compli-
cated objective function. However, using ideas such as the Alter-
nating Direction Method of Multipliers [3], we demonstrate how
one can address such problems by combining standard o�-the-shelf
solvers for optimizing a deep autoencoder with standard techniques
for optimizing proximal problems involving the `1 or other similar
penalties [4, 20].

3 METHODOLOGY
In this section we provide the derivation of our proposed method-
ologies for constructing Robust Deep Autoencoders, which we view
as a combination of autoencoders and robust principal component
analysis. �e central idea is that a RDA inherits the non-linear repre-
sentation capabilities of autoencoders combined with the anomaly
detection capabilities of RPCA. �e key insight is that noise and
outliers1 are essentially incompressible and therefore cannot ef-
fectively be projected to a low-dimensional hidden layer by an
autoencoder. In particular, if exceptions could be allowed to the
autoencoder loss function, then the low-dimensional hidden layer
could provide accurate reconstruction, with a low-dimensional hid-
den layer, except for those few exceptions. Just as in RPCA, when
the noise and outliers are isolated into S , the remaining data LD

1In this paper, the term “noise” implies the element-wise noise, the “outlier” implies
the row-wise outlying instance and the “anomalies” implies both.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

666

can be accureately reconstructed by an autoencoder with such a
low-dimensional hidden layer.

3.1 Robust Deep Autoencoders with `1
Regularization

Inspired by RPCA, we augment autoencoders with a �lter layer.
�e �lter layer culls out the anomalous parts of the data that are
di�cult to reconstruct, and the remaining portion of the data can
be represented by the low-dimensional hidden layer with small
reconstruction error.

Similar to RPCA, a Robust Deep Autoencoder also splits input
data X into two parts X = LD + S , where LD represents the part of
the input data that is well represented by the hidden layer of the
autoencoder, and S contains noise and outliers which are di�cult
to reconstruct. By removing the noise and outliers from X , the
autoencoder can more perfectly recover the remaining LD . To
achieve this property, our loss function for a given input X could
be thought of as the `0 norm of S , which counts the number of
non-zero entries in S , balanced against the reconstruction error of
LD , as in the optimization problem

min
θ
‖LD − Dθ (Eθ (LD))‖2 + λ‖S ‖0

s.t. X − LD − S = 0,
(6)

where Eθ (·) denotes an encoder, Dθ (·) denotes a decoder, and S
captures the anomalous data, LD is a low dimension manifold and
λ is a parameter that tunes the level of sparsity in S . λ plays an
essential role in our analysis. In particular, a small λ will encourage
much of the data to be isolated into S as noise or outliers, and
therefore minimize the reconstruction error for the autoencoder.
Similarly, a large λ will discourage data from being isolated into S
as noise or outliers, and therefore increase the reconstruction error
for the autoencoder.

Foreshadowing our results in Section 5, we note that we make
extensive use of the λ parameter in our numerical results. In par-
ticular, one can tune λ depending on the desired use of the robust
autoencoder. For example, λ can be tuned to maximize the per-
formance of the features provided by the hidden layer in some
supervised learning problems or λ can be tuned to optimize false
alarm rates in unsupervised anomaly detection problems.

Unfortunately, the optimization problem in (6) is not compu-
tationally tractable, just as is (4). However, following the RPCA
literature [6, 7, 20], one can relax the combinatorial ‖S ‖0 term of
the optimization (6) by replacing it with a convex relaxation ‖S ‖1,
giving rise to the optimization

min
θ
‖LD − Dθ (Eθ (LD))‖2 + λ‖S ‖1

s.t. X − LD − S = 0.
(7)

Notice that in the constraint of (7) we split the input dataX into two
parts, LD and S . LD is the input to an autoencoder Dθ (Eθ (LD)) and
we train this autoencoder by minimizing the reconstruction error
| |LD − Dθ (Eθ (LD)) | |2 through back-propagation. S , on the other
hand, contains noise and outliers which are di�cult to represent
using the autoencoder Dθ (Eθ (·)).

Note, while the objective | |LD −Dθ (Eθ (LD)) | |2 does not specify
any particular form for the encoding and decoding pair E and D,

herein we follow the standard practice of having
Eθ (x) = EW ,b (x) = logit(Wx + bE)

and
Dθ (x) = DW ,b (x) = logit(WT EW ,b (x) + bD)

[11].

3.2 Robust Deep Autoencoders with `2,1
Regularization

Our basic RDA in Section 3.1 assumes that the noise and outliers
are unstructured, and thus we have used a generic `1 penalty on
S to introduce element-wise sparsity. However, in many cases we
may have anomalies that are structured.

In particular, we can view our training data as a matrix where
each row is a data instance, such as a picture in an image processing
application or a packet in a network analysis application, while
each column is a feature, such as a pixel in an image or a particular
byte in a packet. An example of such a data matrix is shown in
Figure 1.

Accordingly, we treat two di�erent types of group anomalies.
First, we have the case where a particular feature is corrupted
across many instances. For example, perhaps a digital camera has
a bad pixel in its image plane. Second, we have the case where a
particular instance is anomalous across many di�erent features.
For example, one may have a picture of a 7 mixed into a group of
pictures all of which are otherwise pictures of 2s, as in Figure 1.
As a consequence, we have developed additional techniques that
group errors across elements in S to enhance anomaly detection.
In particular, both cases can easily be treated by our methods by
generalizing the `1 penalty to a grouped `2,1 norm [2].

Figure 1: �is �gure shows two examples of group anom-
alies. For example, on the le�, we see a collection of 2s cor-
rupted by a single 7. �is corresponds to a row of X being
anomalous. Similarly, on the right, we see a collection of dig-
its where a particular pixel is always on. �is corresponds to
a column of X being anomalous. Our structured `2,1 penalty
is intended to address both of these cases.

3.3 Anomalous Feature and Instance Detection
In particular, the `2,1 norm can be de�ned as

| |X | |2,1 =
n∑
j=1
| |x j | |2 =

n∑
j=1

(
m∑
i=1
|xi j |

2)1/2 (8)

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

667

and, it can be viewed as inducing a `2 norm regularizer over mem-
bers of each group and then a `1 norm regularizer between groups
[19]. Similarly, if we want to group the elements of a row and then
look for sparse anomalies among the collection of rows, we merely
need to look at the transpose of X and use | |XT | |2,1.

With de�nition (8) in mind, we can pose the following optimiza-
tion problem

min
θ,S
‖LD − Dθ (Eθ (LD))‖2 + λ‖S ‖2,1

s.t. X − LD − S = 0,
(9)

where the terms are de�ned as in (7) except the `1 norm has been
replaced by the grouped norm `2,1.

Similarly, if we are interested in analyzing data with anomalous
data instances, then we merely need to consider the following
optimization problem using the grouped penalty `2,1 on ST :

min
θ,S
‖LD − Dθ (Eθ (LD))‖2 + λ‖S

T ‖2,1

s.t. X − LD − S = 0.
(10)

4 ALGORITHM TRAINING
In this section we provide the details of our methodology for solv-
ing problems such as (7), (9), and (10). In particular, we are inspired
by ideas such as the Alternating Direction Method of Multipiers
[4] and R. L. Dykstra’s alternating projection method [5]2. As we
will detail, we iteratively optimize each of the terms in (7), (9),
and (10) separately, interspersed with projections onto the con-
straint manifold. Note, since our full objective is not convex, the
convergence of the method to a global minimum is non-trivial to
guarantee. In particular, even the minimization of just the autoen-
coder | |LD−Dθ (Eθ (LD)) | |2 cannot, in full generality, be guaranteed
to �nd a global minimizer [29]. However, as we will demonstrate in
Section 5, we have substantial empirical evidence that the optimiza-
tion algorithm we present below provides high-quality solutions.

4.1 Alternating Optimization for `1 and `2,1
Robust Deep Autoencoder

�e key insight of the Alternating Direction Method of Multipliers
(ADMM) [4] is to divide the objective we wish to minimize into
two (or more) pieces. One then optimizes with respect to one of
the pieces while keeping the other pieces �xed. Accordingly, as
inspired by the RPCA literature [6, 7, 20] we split the objective
in (7), (9), and (10) into a �rst piece which depends on LD and is
independent of S , namely | |LD −Dθ (Eθ (LD)) | |2, and a second piece
which depends on S and is independent of LD .

Back-propagation [10] is a typical training algorithm for deep
learning and it is precisely the method we use for optimizing the
term | |LD − Dθ (Eθ (LD)) | |2 when S is held constant. However, the
terms such as | |S | |1, | |S | |2,1, and | |ST | |2,1 are more delicate since
they are not di�erentiable. However, such non-di�erentiable terms
can be phrased as proximal gradient problems [4], whose solution
we will detail in Sections 4.2 and 4.3. To combine these two parts,
we follow the idea of an ADMM [3, 4] and Dykstra’s alternating
projection method [5]. In e�ect, we use a back-propagation method
to train an autoencoder to minimize | |LD−D (E (LD)) | |2 with S �xed,
2Not to be confused with E. W. Dijkstra’s algorithm for shortest paths in graphs

a proximal gradient to minimize the penalty term | |S | |1 or | |S | |2,1
with LD �xed, and a�er each minimization we use element-wise
projections S = X − LD and LD = X − S to enforce the constraints.

�e following is our proposed optimizing method:

Input: X ∈ RN×n

Initialize LD ∈ R
N×n , S ∈ RN×n to be zero matrices, LS = X ,

and an autoencoder D (E (·)) with randomly initialized
parameters.

while(True):
1. Remove S from X , using the remainder to train the

autoencoder. (In the �rst iteration, since S is the zero matrix,
the autoencoder D (E (·)) is given the input X):

LD = X − S
2. Minimize the �rst term | |LD − D (E (LD)) | |2 using

back-propagation.
3. Set LD to be the reconstruction from the trained

autoencoder:
LD = D (E (LD))
4. Set S to be the di�erence between X and LD :
S = X − LD
5. Optimize S using a proximal operator:
S = proxλ,l2,1 (S)
or:
S = proxλ,l1 (S)
6.1 Check the convergence condition that LD and S are

close to the input X thereby satisfying the constraint:
c1 = | |X − LD − S | |2 / | |X | |2
6.2 Check the convergence condition that LD and S have

converged to a �xed point:
c2 = | |LS − LD − S | |2 / | |X | |2
if c1 < ε or c2 < ε :

break
7. Update LS for convergence checking in the next

iteration:
LS = LD + S

Return LD and S

4.2 Proximal Method for `1 Norm
�e `1 norm can be optimized e�ciently through the use of a
proximal method [3, 4] such as

proxλ,l1 (xi) =

xi − λ, xi > λ

xi + λ, xi < −λ

0, xi ∈ [−λ, λ].
(11)

Such a function is known as a shrinkage operator and is quite
common in `1 optimization problems. For additional details see [4].

�e following pseudo-code provides an implementation of prox-
imal operator proxλ,l1 (S):

Input: S ∈ Rm×n , λ

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

668

For i in 1 tom × n:
if S[i] > λ :

S[i] = S[i] − λ
continue

if S[i] < −λ :
S[i] = S[i] + λ
continue

if −λ <= S[i] <= λ :
S[i] = 0
continue

Return S

4.3 Proximal Method for `2,1 Norm
Similar to (11) the `2,1 norm minimization problem can also be
phrased as a proximal problem, but in a slightly more complicated
form. In particular, the proximal operator for the `2,1 norm is a
block-wise so�-thresholding function [3, 18, 19]

(proxλ,l2,1 (x))
j =

x
j
д − λ

x
j
д

| |xд | |2
, | |xд | |2 > λ

0, | |xд | |2 <= λ,

(12)

where the д is a group index and j is a within-group index. �is op-
timization combines elements x j into blocks and thus the element-
wise sparsity from (11) becomes block-wise sparsity. For additional
details see [4].

�e following pseudo-code provides an implementation of prox-
imal operator proxλ,l2,1 (S):

Input: S ∈ Rm×n , λ
For j in 1 to n:

ej = (
m∑
i=1
|S[i, j]|2)1/2

if ej > λ :
For i in 1 tom:

S[i, j] = S[i, j] − λ
S[i, j]
ej

continue
if ej <= λ :

For i in 1 tom:
S[i, j] = 0
continue

Return S

5 NUMERICAL RESULTS
In this section we demonstrate the e�ectiveness of our propose ro-
bust autoencoders using the well-known image recognition MNIST
data set [12]. �e training set consists of 50,000 instances, and each
instance is a 28 × 28 pixel image. Each image is labeled as a digit
ranging from “0” to “9”. However, as we will detail in the sequel,
rather than merely considering the original MNIST data set, we
corrupt the base images with noise and outliers to demonstrate and
validate the various capabilities of our approaches.

5.1 Implementation Details
We build our implementation of a RDA using the Google machine
learning library, Tensor�ow, version 0.12.0rc0 [1] and �eano ver-
sion 0.9 [26]. We ran our experiments on a virtual machine running
an Ubuntu 14.04.3 image with 2 CPUs, and 4 GB memory. �e image
is run on hardware provided the NSF Jetstream Cloud [25, 27].

As is standard in the literature [11], we specify the encoder E (·)
of each layer as E (X) = д(X ·W +bE), whereX is our input data, д is
an activation function,W is a projection from the input dimension
to a lower dimensional hidden layer andb is a bias term. �e decoder
D (·) of each decoding layer is X = D (X) = д(E (X) ·WT + bD),
where WT projects a low-dimensional hidden layer back to the
higher input dimension. We choose д(·) to be the sigmoid function
д(t) =

1
1 + exp−t .

�e TensorFlow based autoencoder is the building block of our
implementation and makes use of the following pseudo-code inter-
face:

Initialize an autoencoder with sizes of each layer
.init(layer sizes)

Training the autoencoder, given data X
.�t(X, iter, batch size)

A�er training, get the hidden layer value
.transform(X)

Our code is available on Github at: h�ps://github.com/zc8340311/
RobustAutoencoder/tree/master/lib

5.2 `1 Robust Deep Autoencoder for Denoising
In Figure 2, we show the key results for our proposed `1 penal-
ized Robust Deep Autoencoder as compared against a standard
autoencoder. Our experiment consists of taking the digits from the
MNIST data set and corrupting them with various levels of noise.
In particular, we randomly pick a certain number of the pixels for
each instance, and we set the pixel value to 0 if the original pixel
value is larger than 0.5, and we set the pixel value to 1 otherwise.

�en, these corrupted images are used to train a normal autoen-
coder and a RDA each with exactly the same number and breadth
of layers. In particular, we use two hidden layers which project
the input data from 784 dimensions to 196 dimensions, and then
project 196 dimensions to 49 dimensions.

Both models are only trained on corrupted images and neither
of them has any extra information, e.g. the labels of the images or
any clean images. A�er training, we extract the dimension reduced
features from their hidden layers.

To judge the quality of the features produced by our hidden
layers we use the following procedure. In particular, we use the
values in the hidden layer as features for a supervised classi�er.
We split the data with 1/3 of the instances as a testing set and the
remaining 2/3 as a training set. �e quality of features produced by
the various autoencoders are judged by the prediction accuracy of
the classi�er on the test set. For our supervised classi�er, we choose
a random forest as implemented in the scikit-learn package, version
0.18, [21]. We use 50 trees in the forest and leave the remaining

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

669

https://github.com/zc8340311/RobustAutoencoder/tree/master/lib
https://github.com/zc8340311/RobustAutoencoder/tree/master/lib

parameters for the classi�er at their default values (e.g., each tree
has access to a number features equal to the square root of the total
number of input features). Note, we do not choose a state-of-the-art
supervised learning method for this problem since the supervised
learning method is merely used to assess the performance of the
features provided by the (robust) autoencoder’s hidden layers. We
leverage the random forest to o�er a fair comparison environment,
which is consistent through all experiments.

For a �xed supervised classi�er, we presume that higher test error
rates are indicative of lower feature quality. With the above details
in mind, Figure 2 demonstrates how the features provided by an
autoencoder’s hidden layer are corrupted by the noise in the images,
while the robust autoencoder’s hidden layers are more faithful
representations of the original noiseless images, even though the
RDA was trained using only corrupted imagery.

In the Figure 2, from le� to right, the input X has a larger and
larger fraction of corrupted pixels. As speci�ed by our noise model,
the number of corrupted pixels ranges from 10 to 350 (out of 784)
per image. From bo�om to top, the λ value grows from 0.1 to 100.
In particular, we can see the Robust Deep Autoencoders and normal
autoencoders get similar test errors when there are few corruptions,
e.g. 10 to 50 corrupted pixels for each image (as shown in Figure
2 by case 1©). �is fact should not be surprising, since for such
images the `1 penalty does not play a pivotal role.

However, when the noise increases, for example in the cases of
area 2© in Figure 2, and one has from 80 to 300 corrupted pixels
per image, and the normal autoencoder has up to 30% higher error
rates than the Robust Deep Autoencoders! �e red areas in Figure 2
indicate those experiments where noise has signi�cantly reduced
the feature quality provided by the autoencoder’s hidden layer,
while the Robust Deep Autoencoder’s hidden layer is immune to
the noise, due to S and the `1 penalty. Also, from a more qualitative
point of view, one also �nds that the reconstructed images from the
Robust Deep Autoencoders are cleaner digits and might be more
desirable for consumption by a human analyst. Finally, when the
fraction of corrupted pixels continues to grow, say about above
300 corrupted pixels per image, in the cases of area 3© in Figure 2,
neither model can produce high-quality features and the testing
accuracy of both methods is again the same.

5.3 `2,1 Robust Deep Autoencoder for Outlier
Detection

Our anomaly detection experiments begin by gathering images
of the digit “4” from the MNIST dataset, and these images will
comprise our nominal data. �is nominal data is then corrupted by
mixing in images which are randomly sampled from other digit’s
images (e.g. “0”, “7”,“9” etc.). �e mixed data contains 4859 nominal
instances and 265 anomalies. Accordingly, the ratio of anomalies to
total number of instances in this set is about 5.2%. Our experimental
setup is shown in Figure 3.

We train an `2,1 RDA using the mixed data without providing
any side information (such as which images are actually “4”). It is
our goal that the `2,1 RDA should automatically pick out the high
reconstruction error anomalies and isolate these outliers into S . �e
performances of the `2,1 RDA can then be assessed by comparing

Figure 3: �is �gure shows the �rst 100 image instances for
our outlier detection task. In this experiment, the “4” dig-
its are nominal, and all other digits are considered as anom-
alies.

the predicted outlying instances in S and the true outliers whose
label we know.

In this instance, the layer sizes of the RDA are 784, 400, and 200.
3 To get the optimal value of λ, we search a range from 1e − 05 to
1.5e − 04 with layer sizes �xed and only judge the λ value based
on its F1-score for detecting outliers [8]. Figure 4 shows a set of
examples that are intended to provide the reader within intuition
as to how λ in�uences the predictions and sparsity of S when using
the `2,1 norm.

Figure 5 shows the results of our anomaly detection experiment.
We wish to emphasize that the entire experiment is unsupervised,
except for the training of the single parameter λ.

In particular, the training of the `2,1 RDA is fully unsupervised,
and the `2,1 RDA is only trained with unlabeled images. Tuning
the λ parameter makes the algorithm semi-supervised in that we
use the F1-score to select the optimal λ value. �e idea is that the
optimal choice for λ does not revolve around the particular form
of the anomalies. Rather, the choice of λ revolves around ensuring
that all nominal instances are represented by LD . In other words, λ
is not chosen based on the anomalous instances, it is chosen based
on the normal instances.

As shown in Figure 4 our experiment proceeds as follows. λ
is used to control the sparsity of S . In particular, a small λ places
a small penalty on S , and the RDA emphasizes minimizing the
reconstruction error by marking many images as anomalous and
giving rise to many false-positives. λ then can be increased to trade-
o� false-positives for false-negatives. Accordingly, the optimal λ
should balance both false-positive and false-negative rates. �us,
we use the F1-score to select the optimal λ.

To validate the performance of our outlier and anomaly detection
methods, we compare our model against a state-of-the-art outlier
detection method, namely the Isolation Forest [14]. �e key idea of
Isolation forests is that anomalies are

3Note, for this experiment we do not use a normal autoencoder.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

670

Figure 2: �is �gure shows the di�erence between error rates for the features constructed by a normal autoencoder and a
RDA. Red indicates where the error rates of the RDA are superior to those of the normal autoencoder, and blue indicates
where the converse is true. �e errors rates are bases upon the prediction of image labels with respect to di�erent degrees of
corruption and di�erent values of λ in the Robust Deep Autoencoders. �e x-axis shows di�erent corruption levels, and the
y-axis shows di�erent λ values. �e two images on the bottom, indicated with 1© and 3©, show examples of images with the
designated amount of corrupted pixels. As can be seen, the images range from very modest corruptions to those in which the
original digits cannot be seen. Most importantly, the area marked by 2© shows a large region, covering many di�erent levels
of corruption and values of λ, in which the RDA performs better than the standard autoencoder on the image classi�cation
task. In particular, for some levels of corruption, and values of λ, the robust auto-encode performs up to 30% better. On the
right, we show several examples of images from the red area. As can be seen, the original images on top are quite corrupted,
while the images in the middle, produced from the Robust Deep Autoencoder’s output layer, are largely noise free. However,
the standard autoencoder, as it only has noisy imagery on which to train, faithfully, but inappropriately, reproduces the noise.

’few and di�erent’, which make them more sus-
ceptible to isolation than normal points [14].

We use the Isolation Forests model as implemented by version
0.18.1 of the scikit-learn package [21]. �e isolation forest model
take two variables: the number of trees and the fraction of outliers.
We �x the number of trees to 100 and optimize over the outlier
fraction from 0.01 to 0.69 (similiar to the optimization of λ in the
RDA). We pick the best fraction number based on the F1-score.

We compare the `2,1 RDA and isolation forest on their best F1-
score and on how they perform across a range of parameters. From

Figures 5 and 6, we can see the RDA gets as F1 score of 0.64 with
its optimal λ parameter, while the highest F1-score achieved by the
Isolation Forest is 0.37, which is a 73.0% improvement.

5.4 Convergence of Training Method
As we mentioned in Section 4, since the objective function of both
an `1 RDA and an `2,1 RDA is not convex, the convergence of our
model to a global minimum is non-trivial to guarantee. However,
in our experiments, we have empirically observed the convergence
rates of our algorithm, and in this section, we provide some of

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

671

Figure 4: �is �gure shows how the sparsity of S changes with di�erent λ values. 1© shows a small λ, namely λ = 0.00005,
which levies a small penalty on S , and the robust autoencoder emphasizes minimizing the reconstruction error by marking
many images as anomalous. Accordingly, S is dense and every instance is non-zero. Since non-zero rows in S are marked as
anomalies, the RDA has a high false-positive rate. In the case of 2©, 3©, and 4© the λ value is larger, placing a heavier penalty
on S , and forcing S to be sparser. Many rows are shrunk to zero which reduces the false-positive rate, but also increases the
false-negative rate. For example, 6© indicates an example of a false-negative; a “1” digit is supposed to be picked out as an
outlier, but is marked as nominal. When the λ value gets even larger, as in 5©, the large penalty on S causes every row of S to be
shrunk to zero. In this cases, S is the zero matrix and thus no instance will be marked as anomalies. Accordingly, the optimal
λ should balance both false-positive and false-negative rates. �us, we use the F1-score to select the optimal λ.

our observations. Our proposed training algorithm, following the
idea of an ADMM, minimizes one part of the objective with the
other parts �xed. In particular, with S �xed, we use 30 instances
as a training batch and 5 epochs to train the autoencoder part
|LD − Dθ (Eθ (LD))‖2. With L �xed, solving the proximal problem
for S is deterministic and only takes one step. Accordingly, in Figure
7, one can see a “stair case” pa�ern where 5 epochs of minimization
for the autoencoder is followed by a single solve of the proximal
problem for S . As one can see, the largest decrease in objective
function is achieved by each proximal solve.

As we discussed in Section 3, λ is also essential to the conver-
gence of the problem. Accordingly, Figure 7 shows convergence
histories for several values of λ. As one can see, our proposed
ADMM algorithm converges quickly in many cases of interest. A
theoretical justi�cation of these convergence properties will be a
subject of future work.

Figure 7: �is �gure shows the convergence of our optimiza-
tion algorithm for (7). �e objective descends quickly in the
�rst 50 iterations and archives convergences a�er 200 iter-
ations when λ is small. Convergence is slower for large λ
values but still reasonable for our problems of interest.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

672

Figure 5: �is �gure shows the precision, recall and F1-
scores with di�erent λ values for the RDA. In the cases of
a small λ, every row is non-zero and all the rows are marked
as anomalies. We get high recall scores but very low preci-
sion and F1-scores. As the λ values increase, the F1-score and
score increase reaching a maximum at λ = 0.00065 with an
F1-score of 0.64.

Figure 6: �is �gure shows the precision, recall and F1-score
as we vary the fraction ratio for the Isolation Forest algo-
rithm from 0.01 to 0.69. �e optimal F1-score that the Isola-
tion Forest achieves is about 0.37 when the fraction is equal
to 0.11. �is F1-score is approximately 73.0% worse than the
score achieve by the RDA.

6 CONCLUSION
In this paper, we have shown how denoising autoencoders can be
generalized to the case where no clean, noise-free data is available,
creating a new family of methods that we call “Robust Deep Autoen-
coders”. �ese methods use an anomaly regularizing penalty based
upon either `1 or `2,1 norms. �e resulting optimization problem
was solved using ideas from proximal methods [4], backpropaga-
tion [24], and the Alternating Direction of Method of Multipliers
(ADMM) [3]. We demonstrated the e�ectiveness of our approaches
based upon noisy versions of the MNIST data set [12], where we
achieved an approximately 30% improvement over standard autoen-
coders. As an interesting consequence of the development of such

robust deep autoencoders, we also derived a novel family of unsu-
pervised anomaly detection algorithms (parameterized by λ) and
the e�ectiveness of these methods was demonstrated by comparing
against Isolation Forests where we achieved a 73% improvement
over that method. It is worth mentioning that in this paper we focus
on improving autoencoders, however the X = LD + S framework,
which is inspired by the RPCA, could be generalized where the
autoencoder part is exchanged for other cost functions.

In the future, we would like to test our model on additional
data sets from multiple areas, especially for the detection of cyber-
a�acks in network data. In addition, while we have substantial
empirical evidence as to the convergence of our training algorithm
for constructing high quality solutions, we would like to derive a
theoretical basis for our training algorithm including convergence
rates.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wa�enberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. (mar 2016). arXiv:1603.04467 h�p://arxiv.org/abs/1603.04467

[2] Christopher M Bishop. 2006. Pa�ern recognition. Machine Learning 128 (2006),
1–58.

[3] Stephen Boyd. 2010. Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers slide (Alternating Direction Method
of Multipliers). (2010). h�p://dl.acm.org/citation.cfm?id=2185816

[4] S.P. Boyd and L. Vandenberghe. 2004. Convex optimization. Vol. 25. DOI:h�p:
//dx.doi.org/10.1080/10556781003625177

[5] James P Boyle and Richard L Dykstra. 1986. A method for �nding projections
onto the intersection of convex sets in Hilbert spaces. In Advances in order
restricted statistical inference. Springer, 28–47.

[6] E J Candès, X Li, Y Ma, and J Wright. 2009. Robust Principal Component Analysis?
Preprint: arXiv:0912.3599 (2009).

[7] David L. Donoho. 2006. For most large underdetermined systems of linear
equations the minimal �? 1-norm solution is also the sparsest solution. Com-
munications on Pure and Applied Mathematics 59, 6 (2006), 797–829. DOI:
h�p://dx.doi.org/10.1002/cpa.20132 arXiv:0912.3599

[8] J. Friedman, T. Hastie, and R. Tibshirani. 2008. �e Elements of Statistical Learning.
Vol. 2. h�p://www-stat.stanford.edu/

[9] Jonas Gehring, Yajie Miao, Florian Metze, and Alex Waibel. 2013. Extracting
deep bo�leneck features using stacked auto-encoders. ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing - Proceedings (2013), 3377–
3381. DOI:h�p://dx.doi.org/10.1109/ICASSP.2013.6638284

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
(2016). DOI:h�p://dx.doi.org/10.1038/nmeth.3707 arXiv:arXiv:1312.6184v5

[11] Y LeCun, Y Bengio, and G Hinton. 2015. Deep learning. Nature (2015). h�p:
//www.nature.com/nature/journal/v521/n7553/abs/nature14539.html

[12] Y LeCun, L Bo�ou, and Y Bengio. 1998. Gradient-based learning applied to
document recognition. Proceedings of the (1998). h�p://ieeexplore.ieee.org/
abstract/document/726791/

[13] Honglak Lee, Alexis Ba�le, Rajat Raina, and Andrew Y Ng. 2007. E�cient sparse
coding algorithms. Advances in neural information processing systems 19 (2007),
801.

[14] Fei Tony Liu and Kai Ming Ting. 2008. Isolation Forest. 2008 Eighth IEEE
International (2008). h�p://ieeexplore.ieee.org/xpls/abs

[15] O Lyudchik. 2016. Outlier detection using autoencoders. (2016). h�p://cds.cern.
ch/record/2209085

[16] Yunlong Ma, Peng Zhang, Yanan Cao, and Li Guo. 2013. Parallel auto-encoder
for e�cient outlier detection. In Proceedings - 2013 IEEE International Conference
on Big Data, Big Data 2013. 15–17. DOI:h�p://dx.doi.org/10.1109/BigData.2013.
6691791

[17] Lingheng Meng, Shifei Ding, and Yu Xue. 2016. Research on denoising sparse
autoencoder. International Journal of Machine Learning and Cybernetics (2016),
1–11. DOI:h�p://dx.doi.org/10.1007/s13042-016-0550-y

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

673

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://dl.acm.org/citation.cfm?id=2185816
http://dx.doi.org/10.1080/10556781003625177
http://dx.doi.org/10.1080/10556781003625177
http://dx.doi.org/10.1002/cpa.20132
http://arxiv.org/abs/0912.3599
http://www-stat.stanford.edu/
http://dx.doi.org/10.1109/ICASSP.2013.6638284
http://dx.doi.org/10.1038/nmeth.3707
http://arxiv.org/abs/arXiv:1312.6184v5
http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html
http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html
http://ieeexplore.ieee.org/abstract/document/726791/
http://ieeexplore.ieee.org/abstract/document/726791/
http://ieeexplore.ieee.org/xpls/abs
http://cds.cern.ch/record/2209085
http://cds.cern.ch/record/2209085
http://dx.doi.org/10.1109/BigData.2013.6691791
http://dx.doi.org/10.1109/BigData.2013.6691791
http://dx.doi.org/10.1007/s13042-016-0550-y

[18] So�a Mosci, Lorenzo Rosasco, Ma�eo Santoro, Alessandro Verri, and Silvia Villa.
2010. Solving structured sparsity regularization with proximal methods. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 418–433.

[19] Ulric Neisser. 2004. Pa�ern Recognition. Cognitive psychology: Key
readings. (2004). DOI:h�p://dx.doi.org/10.1016/j.patcog.2011.03.019
arXiv:arXiv:1011.1669v3

[20] Randy C. Pa�enroth, Philip C. Du Toit, Louis L Scharf, Anura P Jayasumana,
Vidarshana Bandara, and Ryan Nong. 2012. Space-time signal processing for
distributed pa�ern detection in sensor networks. Proceedings of SPIE - �e
International Society for Optical Engineering 8393 (2012), �e Society of Photo–
Optical Instrumentation Engin. DOI:h�p://dx.doi.org/10.1117/12.919711

[21] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand �irion, Olivier Grisel, Mathieu Blondel, Peter Pre�enhofer, Ron Weiss,
Vincent Dubourg, and others. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, Oct (2011), 2825–2830.

[22] Yu Qi, Yueming Wang, Xiaoxiang Zheng, and Zhaohui Wu. 2014. Robust fea-
ture learning by stacked autoencoder with maximum correntropy criterion. In
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing
- Proceedings. 6716–6720. DOI:h�p://dx.doi.org/10.1109/ICASSP.2014.6854900

[23] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
2011. Contractive auto-encoders: Explicit invariance during feature extraction.
In Proceedings of the 28th international conference on machine learning (ICML-11).
833–840.

[24] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (oct 1986), 533–536.
DOI:h�p://dx.doi.org/10.1038/323533a0 arXiv:arXiv:1011.1669v3

[25] Craig A. Stewart, George Turner, Ma�hew Vaughn, Niall I. Ga�ney, Timothy M.
Cockerill, Ian Foster, David Hancock, Nirav Merchant, Edwin Skidmore, Daniel
Stanzione, James Taylor, and Steven Tuecke. 2015. Jetstream: A self-provisioned,

scalable science and engineering cloud environment. Proceedings of the 2015
XSEDE Conference on Scienti�c Advancements Enabled by Enhanced Cyberinfras-
tructure - XSEDE ’15 (2015), 1–8. DOI:h�p://dx.doi.org/10.1145/2792745.2792774

[26] �eano Development Team. 2016. �eano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints abs/1605.02688 (May 2016).
h�p://arxiv.org/abs/1605.02688

[27] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, An-
drew Grimshaw, Victor Hazlewood, Sco� Lathrop, Dave Li�a, Gregory D.
Peterson, Ralph Roskies, J. Ray Sco�, and Nancy Wilkens-Diehr. 2014.
XSEDE: Accelerating scienti�c discovery. Computing in Science and Engi-
neering 16, 5 (sep 2014), 62–74. DOI:h�p://dx.doi.org/10.1109/MCSE.2014.80
arXiv:h�p://dx.doi.org/10.1109/MCSE.2014.80

[28] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. 2008. Extracting and composing robust features with denoising autoen-
coders. Proceedings of the 25th international conference on Machine learning
- ICML ’08 (2008), 1096–1103. DOI:h�p://dx.doi.org/10.1145/1390156.1390294
arXiv:arXiv:1412.6550v4

[29] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. 2010. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. Journal of
Machine Learning Research 11, Dec (2010), 3371–3408.

[30] J Xie, L Xu, and E Chen. 2012. Image denoising and in-
painting with deep neural networks. Advances in Neural In-
formation Processing (2012), 1–9. h�p://papers.nips.cc/paper/
4686-image-denoising-and-inpainting-with-deep-neural-networksh�p:
//papers.nips.cc/paper/4686-image-denoising

[31] Dan Zhao, Baolong Guo, Jinfu Wu, Weikang Ning, and Yunyi Yan. 2015. Robust
feature learning by improved auto-encoder from non-Gaussian noised images. In
IST 2015 - 2015 IEEE International Conference on Imaging Systems and Techniques,
Proceedings. DOI:h�p://dx.doi.org/10.1109/IST.2015.7294537

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

674

http://dx.doi.org/10.1016/j.patcog.2011.03.019
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1117/12.919711
http://dx.doi.org/10.1109/ICASSP.2014.6854900
http://dx.doi.org/10.1038/323533a0
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1145/2792745.2792774
http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1109/MCSE.2014.80
http://arxiv.org/abs/http://dx.doi.org/10.1109/MCSE.2014.80
http://dx.doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/arXiv:1412.6550v4
http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networkshttp://papers.nips.cc/paper/4686-image-denoising
http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networkshttp://papers.nips.cc/paper/4686-image-denoising
http://papers.nips.cc/paper/4686-image-denoising-and-inpainting-with-deep-neural-networkshttp://papers.nips.cc/paper/4686-image-denoising
http://dx.doi.org/10.1109/IST.2015.7294537

	Abstract
	1 Introduction
	1.1 Contribution

	2 Background
	2.1 Deep Autoencoders
	2.2 Robust Principal Component Analysis

	3 Methodology
	3.1 Robust Deep Autoencoders with 1 Regularization
	3.2 Robust Deep Autoencoders with 2,1 Regularization
	3.3 Anomalous Feature and Instance Detection

	4 Algorithm Training
	4.1 Alternating Optimization for 1 and 2,1 Robust Deep Autoencoder
	4.2 Proximal Method for 1 Norm
	4.3 Proximal Method for 2,1 Norm

	5 Numerical Results
	5.1 Implementation Details
	5.2 1 Robust Deep Autoencoder for Denoising
	5.3 2,1 Robust Deep Autoencoder for Outlier Detection
	5.4 Convergence of Training Method

	6 Conclusion
	References

