flow of control, negation,
cut, 2nd order programming,
tail recursion

Yves Lespérance
Adapted from Peter Roosen-Runge

simplicity hides complexity

\begin{itemize}
 \item simple and/or composition of goals hides complex control patterns
 \item not easily represented by traditional flowcharts
 \item may not be a bad thing
 \item want important aspects of logic and algorithm to be clearly represented and irrelevant details to be left out
\end{itemize}

procedural and declarative semantics

\begin{itemize}
 \item Prolog programs have both a declarative/logical semantics and a procedural semantics
 \item declarative semantics: query holds if it is a logical consequence of the program
 \item procedural semantics: query succeeds if a matching fact or rule succeeds, etc.
 - defines order in which goals are attempted, what happens when they fail, etc.
\end{itemize}

and & or

\begin{itemize}
 \item Prolog’s and (,) & or (; and alternative facts and rules that match a goal) are not purely logical operations
 \item often important to consider the order in which goals are attempted
 - left to right for “,” and “;”
 - top to bottom for alternative facts/rules
\end{itemize}
and is not always commutative, e.g.

- sublistV1(S, L):- append(_, L1, L),
 append(S, _, L1).
 i.e. S is a sublist of L if L1 is any suffix of L and S is a prefix of L1

- sublistV2(S, L):- append(S, _, L1),
 append(_, L1 ,L).
 i.e. S is a sublist of L if S is a prefix of some list L1 and L1 is any suffix of L

uses of or (;)

- or “;” can be used to regroup several rules with the same head
- e.g.
 parent(X,Y):- mother(X,Y); father(X,Y).
- can improve efficiency by avoiding redoing unification
- “;” has lower precedence than “,”

Prolog negation

- Prolog uses “\+”, “not provable” or negation as failure
- different from logical negation
- ?- \+ goal. succeeds if ?- goal. fails
- interpreting \+ as negation amounts to making the closed-world assumption
example

- Given program:

 human(ulysses). human(penelope).
 mortal(X):- human(X).
- ?- \+ human(jason).
 Yes
- In logic, the axioms corresponding to the program don’t entail ¬Human(Jason).

semantics of free variables in \+ is “funny”

- normally, variables in a query are existentially quantified from outside e.g. ?- p(X), q(X). represents “there exists x such that P(x) & Q(x)”
- but ?- \+ (p(X), q(X)). represents “it is not the case that there exists x such that P(x) & Q(x)”

To avoid this problem

- \+ works correctly if its argument is instantiated
- so for example in
 intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L,Y,I).
 X and Y should be instantiated

example

- Given program:
 animal(cat). vegetable(turnip).
- ?- \+ animal(X), vegetable(X).
 No why?
- ?- vegetable(X),\+ animal(X).
 X = turnip why?
guarding the “else”

- can’t rely on implicit negation in predicates that can be redone
- in predicates with alternative rules, each rule should be logically valid (if backtracking can occur)
- safest thing is repeating the condition with negation

e.g. intersect

- intersect([], _, []).
- intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
- intersect([X|L], Y, I):-
 \+ member(X,Y), intersect(L, Y, I).
 is OK.

e.g. intersect

- intersect([], _, []).
- intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
- intersect([_|L], Y, I):-intersect(L, Y, I).
is buggy.

?- intersect([a], [b, a], []). succeeds.
why?

inhibiting backtracking

- the cut operator “!” is used to control backtracking
- If the goal G unifies with H in program
 H :-
 H :- G₁,...,Gᵣ, l, Gⱼ,...,Gₖ.
 H :-
 and gets past the !, and Gᵣ,..., Gₖ fails,
 then the parent goal G immediately fails. G₁,...,
 Gᵣ won’t be retried and the subsequent
 matching rules won’t be attempted.
Using ! e.g. intersect

- cut can be used to improve efficiency, e.g.
 {intersect([], _, []).}
 intersect([X|L], Y, [X|I]):-
 member(X,Y), intersect(L, Y, I).
 intersect([[X|L], Y, I]):-
 \+ member(X,Y), intersect(L, Y, I).
 retests member(X,Y) twice

e.g. intersect

- using cut, we can avoid this
 intersect([], _, []).
 intersect([X|L], Y, [X|I]):-
 member(X,Y), !, intersect(L, Y, I).
 intersect([_|L], Y, I):-intersect(L, Y, I).
- means that the last 2 rules are a conditional branch

cut can be used to define useful features

- If goal G should be false when C₁,..., Cₙ holds, can write
 G :- C₁,..., Cₙ, !, fail.
- not provable can be defined using cut
 \+ G :- G, !, fail.
 \+ G.

control predicates

- true (really success), e.g.
 G :- Cond1; Cond2; true.
- fail (opposite of true)
- repeat (always succeeds, infinite number of choice points)
 loopUntilNoMore:- repeat, doStuff, checkNoMore.
 but tail recursion is cleaner, e.g.
 loop :- doStuff, (checkNoMore; loop).
forcing all solutions

```prolog
test :- member(X, [1, 2, 3]),
    nl, print(X),
    fail.  % no alternative sols for print(X) and nl
% but member has alternative sols
?- test.
1
2
3
No
```

2nd order features: bagof & setof

- `bagof(T,G,L)` instantiates L to the list of all instances of T such for which G succeeds, e.g.
  ```prolog
  ?- bagof(X,[member(X,[2,5,7,3,5]),X >= 3],L).
  X = _G172
  L = [5, 7, 3, 5]
  Yes
  ```

- `setof` is similar to `bagof` except that it removes duplicates from the list, e.g.
  ```prolog
  ?- setof(X,[member(X,[2,5,7,3,5]),X >= 3],L).
  X = _G172
  L = [3, 5, 7]
  Yes
  ```

- can collect values of several variables, e.g.
  ```prolog
  ?- bagof(pair(X,Y),[member(X,[a,b]),member(Y,[c,d])],L).
  X = _G157
  Y = _G158
  L = [pair(a, c), pair(a, d), pair(b, c), pair(b, d)]
  Yes
  ```

2nd order features

- `setof` and `bagof` are called 2nd order features because they are queries about the value of a set or relation
- in logic, this is quantification over a set or relation
- not allowed in first order logic, but can be done in 2nd order logic
entering and leaving

- Trace steps are labelled:
 - Call: enter the procedure
 - Exit: exit successfully with bindings for variable
 - Fail: exit unsuccessfully
 - Redo: look for an alternative solution
- 4 ports model

Tail recursion optimization in Prolog

- suppose have goal A and rule A' :- B₁, B₂, ..., Bₙ₋₁, Bₙ. and A unifies with A' and B₂, ..., Bₙ₋₁ succeed
- if there are no alternatives left for A and for B₂, ..., Bₙ₋₁ then can simply replace A by Bₙ on execution stack
- in such cases the predicate A is tail recursive
- nothing left to do in A when Bₙ succeeds or fails/backtracks, so we can replace call stack frame for A by Bₙ’s; recursion can be as space efficient as iteration

e.g. factorial

- simple implementation:
 - fact(0,1).
 - fact(N,F):- N > 0, N₁ is N – 1, fact(N₁,F₁), F is N * F₁.
- close to mathematical definition
- but not tail-recursive
- requires O(N) in stack space

E.g. factorial

- better implementation:
 - fact(N,F):- fact1(N,F₁).
 fact1(0,F,F).
 fact1(N,T,F):- N > 0, T₁ is T * N,
 N₁ is N – 1, fact1(N₁,T₁,F).
- uses accumulator
- is tail-recursive and each call can replace the previous call
- can prove correctness
e.g. append

- append([],L,L).
- append([X|R],L,[X|R|L]):=

 append(R,L,L).

- *append* is tail recursive if first argument is fully instantiated.

- Prolog must detect the fact that there are no alternatives left; may depend on clause indexing mechanism used.

- use of unification means more relations are tail recursive in Prolog than in other languages.

split

- split([],[],[]).
- split([X],[X],[]).
- split([X1,X2|R],[X1|R1],[X2|R2]):=

 split(R,R1,R2).

Tail recursive!

merge

- merge([],L,L).
- merge(L,[],L).
- merge([X1|R1],[X2|R2],[X1|R]):=

 order(X1,X2), merge(R1,[X2|R2],R).

- merge([X1|R1],[X2|R2],[X2|R]):=

 not order(X1,X2), merge([X1|R1],R2,R).

Tail recursive, but lack of alternatives may be hard to detect (can use cut to simplify).

merge sort

- mergesort([],[]).
- mergesort([X],[X]).
- mergesort(L,S):- split(L,L1,L2),

 mergesort(L1,S1),
 mergesort(L2,S2),
 merge(S1,S2,S).
for more on tail recursion

- see Sterling & Shapiro The Art of Prolog Sec. 11.2

Example: Finite State Automata

finite state automata

- a finite state automaton \((\Sigma, S, s_0, \delta, F)\)
 is a representation of a machine as a
 - finite set of states \(S\)
 - a state transition relation/table \(\delta\)
 - mapping current state & input symbol from alphabet \(\Sigma\) to the next state
 - an initial state \(s_0\)
 - a set of final states \(F\)

accepting an input

- a fsa accepts an input sequence from an alphabet \(\Sigma\) if, starting in the designated starting state, scanning the input sequence leaves the automaton in a final state
- sometimes called recognition
- e.g. automaton that accepts strings of x’s and y’s with an even number of x’s and an odd number of y’s
example

- automaton that accepts strings of x’s and y’s with an even number of x’s and an odd number of y’s
- idea: keep track of whether we have seen even number of x’s and y’s
- $S = \{ee, eo, oe, oo\}$
- $s_0 = ee$
- $\delta = \{(ee, x, oe), (ee, y, eo), \ldots\}$
- $F = \{eo\}$

implementation

- fsa(Input) succeeds if and only if the fsa accepts or recognizes the sequence (list) Input.
- initial state represented by a predicate $\text{- initial_state(State)}$
- final states represented by a predicate $\text{- final_states(List)}$
- state transition table represented by a predicate $\text{- next_state(State, InputSymbol, NextState)}$
- note: next_state need not be a function

implementing fsa/1

- $\text{fsa(Input)} :- \text{initial_state(S)}, \text{scan(Input, S)}$. % scan is a Boolean predicate

- $\text{scan([], State)} :- \text{final_states(F)}, \text{member(State, F)}$.
- $\text{scan([Symbol | Seq], State)} :- \text{next_state(State, Symbol, Next)}, \text{scan(Seq, Next)}$.

result propagation

- scan uses pumping/result propagation
- carries around current state and remainder of input sequence
- if FSA is deterministic, when end of input is reached, can make an accept/reject decision immediately; tail recursion optimization can be applied
- if FSA is nondeterministic, may have to backtrack; must keep track of remaining alternatives on execution stack
non-determinism

- a non-deterministic fsa accepts an input sequence if there exists \textit{at least one sequence} which leaves the automaton in one of its final states
- `?- fsa(Input).
- `scan` searches through all possible choices for Symbol at each state;
- fails only if no sequence leads to a final state

representing tables

- can use binary connector, e. g., A-B-C instead of `next_state(A,B,C)`
 - reduces typing;
 - can make it easier to check for errors
- `ee-x-oe. ee-y-ee.`
- `oe-x-ee. oe-y-oo.`
- etc.

revised version

\begin{verbatim}
scan([], State) :- final_states(F),
 member(State, F).
scan([Symbol | Seq], State) :-
 State-Symbol-Next,
 scan(Seq, Next).
\end{verbatim}

Example: modeling and analyzing concurrent processes
process algebra

- concurrent programs are hard to implement correctly
- many subtle non-local interactions
- deadlock occurs when some processes are blocked forever waiting for each other
- process algebra are used to model and analyze concurrent processes

deadlocking system example

```plaintext
defproc(deadlockingSystem, user1 | user2 $ lock1s0 | lock2s0 | iterDoSomething).

defproc(user1, acquireLock1 > acquireLock2 > doSomething > releaseLock2 > releaseLock1).

defproc(user2, acquireLock2 > acquireLock1 > doSomething > releaseLock1 > releaseLock2).
```

deadlocking system example

```plaintext
defproc(lock1s0, acquireLock1 > lock1s1 ? 0).

defproc(lock1s1, releaseLock1 > lock1s0).

defproc(lock2s0, acquireLock2 > lock2s1 ? 0).

defproc(lock2s1, releaseLock2 > lock2s0).

```

transition relation

- $P - A - RP$ means that P can do a single step by doing action A and leaving program RP remaining
- empty program: $0 - A - P$ is always false.
- primitive action: $A - A - 0$ holds, i.e., an action that has completed leaves nothing more to be done.
- sequence: $(A > P) - A - P$
- nondeterministic choice: $(P_1 ? P_2) - A - P$ holds if either $P_1 - A - P$ holds or $P_2 - A - P$ holds.
transition relation

- **interleaved concurrency**: \((P_1 \mid P_2) - A - P\) holds if either \(P_1 - A - P_{11}\) holds and \(P = (P_{11} \mid P_2)\), or \(P_2 - A - P_{21}\) holds and \(P = (P_1 \mid P_{21})\).

- **synchronized concurrency**: \((P_1 \cdot P_2) - A - P\) holds if both \(P_1 - A - P_{11}\) holds and \(P_2 - A - P_{21}\) holds and \(P = (P_{11} \cdot P_{21})\).

- **recursive procedures**: \(\text{ProcName} - A - P\) holds if ProcName is the name of a procedure that has body \(B\) and \(B - A - P\) holds.

can check properties by searching process graph

- A process has an **infinite execution** if there is a cycle in its configuration graph.
- E.g. `defproc(aloop, a > aloop)`
- `has_infinite_run(P):= P - _ - PN, has_infinite_run(PN,[P])`.
- `has_infinite_run(P,V)` holds if process \(P\) has an infinite run when it has already visited configurations in the list \(V\).

checking properties by searching process graph

- `cannot_occurs(P,A)` holds if no execution of \(P\) where action \(A\) occurs.
- search graph for a transition \(P_1 - A - P_2\)
- useful built-in predicate: `forall(+Cond, +Action)` holds iff for all bindings of \(Cond, Action\) succeeds.
- E.g. `forall(member(C,[8,3,9]), C >= 3)` succeeds.

cannot_occurs examples

- `?- cannot_occurs(a > b | a > c, b).` succeeds or fails?
- `?- cannot_occurs((a > b | a > c)$ (a > c), b).` succeeds or fails?
whenever_eventually

- whenever_eventually(P, A1, A2) holds if in all executions of P whenever action A1 occurs, action A2 occurs afterwards
- ?- whenever_eventually(a > b > a, a, b). succeeds or fails?
- ?- whenever_eventually(a > b | a > c, a, b). succeeds or fails?

deadlock_free

- deadlock_free(P) holds if process P cannot reach a deadlocked configuration, i.e. one where the remaining process is not final, but no transition is possible
- ?- deadlock_free(a $ a). succeeds or fails?
- ?- deadlock_free(a > a $ a). succeeds or fails?

whenever_eventually examples

- ?- whenever_eventually(loop1, a, b). succeeds or fails, where defproc(loop1, a > b > loop1)?
- ?- whenever_eventually(loop1, b, a). succeeds or fails, where defproc(loop1, a > b > loop1)?
- ?- whenever_eventually(loop2, b, a). succeeds or fails, where defproc(loop2, a > b > (loop2, ? 0)).

deadlock_free examples

- ?- deadlock_free(loop3 $ a). where defproc(loop3, (a > loop3, ? 0)) succeeds or fails?