Assignment 2
Total marks: 50.

Out: November 5
Due: November 17 at 10am

Note: Your report for this assignment should be the result of your own individual work. Take care to avoid plagiarism (“copying”). You may discuss the problems with other students, but do not take written notes during these discussions, and do not share your written solutions.

1. [20 points] In this exercise, you will work on propositional logic formulas represented as Prolog terms.

Here, a propositional logic formula ϕ is defined as one of the following (ϕ, ϕ_1, and ϕ_2 range over propositional logic formulas):

- a propositional variable, represented by a Prolog atom,
- $\neg \phi$, the negation of ϕ,
- $(\phi_1 \& \phi_2)$, the conjunction of ϕ_1 and ϕ_2,
- $(\phi_1 \lor \phi_2)$, the disjunction of ϕ_1 and ϕ_2,
- $(\phi_1 \Rightarrow \phi_2)$, material implication,
- $(\phi_1 \Leftrightarrow \phi_2)$, double material implication.

For example, $(p \Leftrightarrow \neg (q \lor r)) \& (s \Rightarrow \neg t)$ is a propositional logic formula.

You can define these connectives as operators in Prolog and obtain the right precedence by using the following declarations (\neg is a built-in operator):

```prolog
:- op(800, xfy, [\&]). % Conjunction
:- op(850, xfy, [\lor]). % Disjunction
:- op(870, xfy, [=\]]. % Implication
:- op(880, xfy, [\Leftrightarrow\]]. % Equivalence
```

(a) Suppose that we represent a propositional interpretation as the list of the propositional variables that are true in the interpretation. Implement a Prolog predicate `satisfies(I,F)` that holds if and only if interpretation I satisfies the propositional logic formula F. For example,

`satisfies([p, q], (-p \lor q) \& p)` should succeed, while
`satisfies([p], (-p \lor q) \& p)` should fail.

```prolog
:- op(800, xfy, [\&]). % Conjunction
:- op(850, xfy, [\lor]). % Disjunction
:- op(870, xfy, [=\]]. % Implication
:- op(880, xfy, [\Leftrightarrow\]]. % Equivalence

:- (p \Leftrightarrow \neg (q \lor r)) \& (s \Rightarrow \neg t). % Specific formula
```

```prolog
:- satisfies([p, q], (-p \lor q) \& p). % Succeed
:- satisfies([p], (-p \lor q) \& p). % Fail
```
(b) Implement a Prolog predicate `elimImpl(F, R)` that holds if R is the result of replacing all implications and double implications in propositional logic formula F by their definitions in terms of the other logical connectives. For example, `elimImpl((-p => q) & (r <=> -s), R)` should succeed with `R = (\neg(\neg p) v q) & (\neg r v -s) & (\neg(-s) v r)`.

(c) Implement a Prolog predicate `nnf(F, R)` that holds if R is the result of putting propositional logic formula F in negation normal form. A propositional logic formula is in negation normal form if negation only appears in front of propositional variables and there are no nested negations. You may assume that F contains no implications and double implications. For example, `nnf(-(p & -q), R)` should succeed with `R = (-p v q)`, and `nnf(-(p & -(q v -r)), R)` should succeed with `R = (-p v q v -r)`.

(d) Implement a Prolog predicate `cnf(F, R)` that holds if R is the result of putting propositional logic formula F in conjunctive normal form. A propositional logic formula is in conjunctive normal form if it is a conjunction of disjunctions of literals, where a literal is a propositional variable or its negation. You may assume that F contains no implications and double implications and is already in negation normal form. For example, `cnf((p & -q) v r, R)` should succeed with `R = ((p v r) & (-q v r))`, `cnf((p & -q) v (r & -s), R)` should succeed with `R = (((p v r) & (p v -s)) & (-q v r) & (-q v -s))`, and `cnf(p & (q v (r & s)), R)` should succeed with `R = (p & (q v r) & (q v s))`.

Submit both your Prolog code in file `q1.pl` and your test results in the file `q1tests.txt`. Provide enough tests to convince yourself and the reader that your implementation is correct. Document your code appropriately.

2. [30 points] In this exercise, we use Prolog to implement a subset of an abstract process algebra which can be used to analyze concurrent processes. Expressions in the algebra describe the structure of a process constructed from primitive actions that can be carried out in a particular system. An expression in a process algebra can be tested to see if the process described by the expression has a particular property, for example, whether the process can be proved to eventually terminate. Each primitive action A in the process/system must be declared by asserting `primAction(A)`.

A process is then defined as one of the following:

- 0 (the empty process – nothing left to do), a primitive action,
• $A > P$: a sequence of a primitive action A followed by a process P,
• $P1 \ ? P2$: a non-deterministic branching that either does process $P1$ or process $P2$,
• $P1 \ | \ P2$: interleaved concurrent execution of process $P1$ and $P2$.
• $P1 \ $ $P2$: synchronized concurrent execution of processes $P1$ and $P2$.
• ProcName: a call to the procedure named ProcName.

Procedures are defined by asserting $\text{defproc(ProcName,Body)}$ where ProcName is a symbol that is the procedure’s name and Body is a process expression that is the procedure’s body. When the procedure’s name occurs in a process expression, it can be replaced by procedure’s body. Procedures can be recursive, for example:

$$\text{defproc(iterDoSomething, doSomething > iterDoSomething ? 0)}.$$
which performs the primitive action doSomething 0 or more times.

We impose the following restrictions on recursive procedure definitions: their body cannot contain the concurrent execution constructs; and they must always perform at least one primitive action before making a recursive call.

Among the process composition operators we assume that sequence $>$ has highest precedence, followed by nondeterministic branch $\ ?$, then interleaved concurrency $|$, and finally synchronous concurrency $. Parentheses can be used to override this.
You can obtain the right precedence in Prolog by using the following declarations:

```prolog
:- op(700,xfy,>).
:- op(800,xfy,?).
% | is predefined as xfy with precedence 1100  
:- op(1120,xfy,$).
```

The execution of processes can be defined in terms of transitions. Let $P1-A-P2$ mean that process $P1$ can do a single step by performing action A leaving process $P2$ remaining to be executed. We can define this relation as follows:

• $0 - A - P$ is always false.
• $A - A - 0$ holds (where A is a primitive action), i.e., an action that has completed leaves nothing more to be done.
• $(A > P) - A - P$ (where A is a primitive action), i.e., doing a step of a sequence $(A > P)$ involves doing the initial action A leaving P to be done afterwards.
• \((P_1 \ ? P_2) - A - P\) holds if either \(P_1 - A - P\) holds or \(P_2 - A - P\) holds.

• \((P_1 \ | P_2) - A - P\) holds if either \(P_1 - A - P_{11}\) holds and \(P = (P_{11} \ | P_2)\), or \(P_2 - A - P_{21}\) holds and \(P = (P_1 \ | P_{21})\).

• \((P_1 \ $ P_2) - A - P\) holds if both \(P_1 - A - P_{11}\) holds and \(P_2 - A - P_{21}\) holds and \(P = (P_{11} \ | P_{21})\).

• \(\text{ProcName} - A - P\) holds if \(\text{ProcName}\) is the name of a procedure that has body \(B\) and \(B - A - P\) holds.

We can define this in Prolog as follows:

\[
\begin{align*}
A - A - 0 & :- \text{primAct}(A). \\
(A > P) - A - P & :- \text{primAct}(A). \\
(P_1 \ ? P_2) - A - PR & :- P_1 - A - PR ; P_2 - A - PR. \\
(P_1 \ | P_2) - A - (P_{1R} \ | P_2) & :- P_1 - A - P_{1R}. \\
(P_1 \ | P_2) - A - (P_1 \ | P_{2R}) & :- P_2 - A - P_{2R}. \\
(P_1 \ $ P_2) - A - (P_{1R} \ $ P_{2R}) & :- P_1 - A - P_{1R}, P_2 - A - P_{2R}. \\
\text{PN} - A - PR & :- \text{defproc}(\text{PN},PB), PB - A - PR.
\end{align*}
\]

We can also define a predicate \(\text{final}(P)\) that holds when process \(P\) may legally terminate. The definition in Prolog is as follows:

\[
\begin{align*}
\text{final}(0). \\
\text{final}(P_1 \ ? P_2) & :- \text{final}(P_1); \text{final}(P_2). \\
\text{final}(P_1 \ | P_2) & :- \text{final}(P_1), \text{final}(P_2). \\
\text{final}(P_1 \ $ P_2) & :- \text{final}(P_1), \text{final}(P_2). \\
\text{final}(P) & :- \text{defproc}(P,B), \text{final}(B).
\end{align*}
\]

An execution of a process is a sequence of transitions, which we will represent by a list \([P_1, A_1, P_2, A_2, \ldots]\), such that for all \(i > 0, P_i - A_i - P_{i+1}\). A complete execution is an execution where the last process is \(\text{final}\) or cannot make any further transitions.

Let’s look at a few simple examples:

• \((a_1 > a_2 > a_3)\) has only one complete execution: \([(a_1 > a_2 > a_3), a_1, (a_2 > a_3), a_3, a_3, 0]\)

• \(((a_1 > a_2) \ | a_3)\) has 3 complete executions:
 \([(a_1 > a_2) \ | a_3), a_1, (a_2 \ | a_3), a_2, (0 \ | a_3), a_3, (0 \ | 0)],\n \([(a_1 > a_2) \ | a_3), a_1, (a_2 \ | a_3), a_3, (a_2 \ | 0), a_2, (0 \ | a_3)],\n \([(a_1 > a_2) \ | a_3), a_1, (a_2 \ | a_3), a_3, (a_2 \ | 0), a_2, (0 \ | a_3)]\)
interleaved concurrency interleaves the actions of the component processes.

- \((a1 \land a1)\) has one complete execution: \([(a1 \land a1), a1, (0 \land 0)]\); when we use synchronous concurrency, both component processes advance.
- \((a1 \land a2)\) has no executions; synchronous concurrent processes can only advance if they perform the same action.
- \(p1\) where \(\text{defproc}(p1, a1 > p1)\) has the infinite execution \([p1, a1, p1, a1, \ldots]\).

Let’s now look at some more interesting examples.

Example 1:

This is a simple example of processes that can deadlock; the processes try to acquire two locks in different orders.

Actions: acquireLock1, acquireLock2, releaseLock1, releaseLock2, doSomething

Process definitions:

```
defproc(deadlockingSystem, user1 | user2 $ lock1s0 | lock2s0 | iterDoSomething).
defproc(user1, acquireLock1 > acquireLock2 > doSomething > releaseLock2 > releaseLock1).
defproc(user2, acquireLock2 > acquireLock1 > doSomething > releaseLock1 > releaseLock2).
defproc(lock1s0, acquireLock1 > lock1s1 ? 0).
defproc(lock1s1, releaseLock1 > lock1s0).
defproc(lock2s0, acquireLock2 > lock2s1 ? 0).
defproc(lock2s1, releaseLock2 > lock2s0).
defproc(oneUserSystem, user1 $ lock1s0 | lock2s0 | iterDoSomething).
```

The process `deadlockingSystem` may deadlock. The single user version `oneUserSystem` cannot deadlock.

Example 2:

In this example, there is producer process that generates data and a consumer process that consumes it. The data is stored in a buffer can handle up to 3 items. The buffer can overflow and underflow. One can use synchronization actions to avoid this.
Actions: produce, consume, underflow, overflow, notFull, notEmpty

Process definitions:

```
defproc(producerConsumerSyst,  
    producer | consumer | faults $ bufferS0).
defproc(producer, notFull > produce > producer).  
defproc(consumer, notEmpty > consume > consumer).  
defproc(faults, underflow ? overflow).  
defproc(bufferUF, notFull > produce > bufferUF ?  
    produce > bufferUF ?  
    consume > bufferUF).  
defproc(bufferS0, notFull > produce > bufferS1 ?  
    produce > bufferS1 ?  
    consume > underflow > bufferUF).  
defproc(bufferS1, notFull > produce > bufferS2 ?  
    produce > bufferS2 ?  
    consume > bufferS0 ?  
    notEmpty > consume > bufferS0).  
defproc(bufferS2, notFull > produce > bufferS3 ?  
    produce > bufferS3 ?  
    consume > bufferS1 ?  
    notEmpty > consume > bufferS1).  
defproc(bufferS3, produce > overflow > bufferOF ?  
    consume > bufferS2 ?  
    notEmpty > consume > bufferS2).  
defproc(bufferOF, produce > bufferOF ?  
    consume > bufferOF ?  
    notEmpty > consume > bufferOF).  
defproc(producerConsumerSystBuggy,  
    producerB | consumerB | faults $ bufferS0).  
defproc(producerB, produce > producerB).  
defproc(consumerB, consume > consumerB).```

**a)** Define a Prolog predicate \( \text{run}(P, R) \) that holds iff \( R \) is a complete execution of process \( P \). Also define a \( \text{print_run}(R) \) predicate that prints executions in a readable way. Test this (at least) on the \( \text{oneUserSystem} \) and \( \text{deadlockingSystem} \) examples.

**b)** Define a Prolog predicate \( \text{has_infinite_run}(P) \) that holds iff process \( P \) has an infinite run (this happens only if there is a cycle in the configuration graph). Test this (at least) on the examples above.
c) Define a Prolog predicate `deadlock_free(P)` that holds iff process `P` cannot reach a deadlocked configuration, i.e., a configuration where the process is not final but cannot make any further transition. Test this (at least) on all the examples above.

d) Define a Prolog predicate `cannot_occur(S,A)` that holds iff there is no execution of process `P` where action `A` occurs (an instance of checking a safety property). Test (at least) `cannot_occur(P, overflow)` on the two versions of the producer-consumer example.

e) Define a Prolog predicate `whenever_eventually(S,A1,A2)` that holds iff in all executions of process `P`, whenever action `A1` occurs, action `A2` occurs afterwards (a instance of checking a liveness property). Test (at least) `whenever_eventually(P, produce, consume)` on the two versions of the producer-consumer example.

For all the parts of the question, provide enough tests to convince yourself and the reader that your implementation is correct. The tests can involve very simple processes where it is easy to see what should happen. Submit both your Prolog code in file `q2.pl` and your test results in the file `q2tests.txt`. Document your code appropriately.

To hand in your report for this assignment, put all the required files in a directory `a2answers` and submit it electronically by the deadline. To submit electronically, use the following Prism lab command:

```
submit 3401 a2 a2answers
```

Your Prolog code should work correctly on Prism.