EECS 3401 3.0 Intro to Al and LP Dept. of Electrical Eng. & Computer Sci.
Fall 2017 York University
Assignment 2
Total marks: 50.

Out: November 5
Due: November 17 at 10am

Note: Your report for this assignment should be the result of your own individual work.
Take care to avoid plagiarism (“‘copying”). You may discuss the problems with other stu-
dents, but do not take written notes during these discussions, and do not share your written
solutions.

1. [20 points] In this exercise, you will work on propositional logic formulas repre-
sented as Prolog terms.
Here, a propositional logic formula ¢ is defined as one of the following (¢, ¢1, and
¢, range over propositional logic formulas):
e a propositional variable, represented by a Prolog atom,

e —(¢, the negation of ¢,

(¢1 & ¢2), the conjunction of ¢, and ¢,
(¢1 v @), the disjunction of ¢; and ¢o,

(¢1 => ¢2), material implication,

e (¢1 <=> @), double material implication.
For example, (p <=> -(q v r)) & (s => —t) is a propositional logic for-
mula.

You can define these connectives as operators in Prolog and obtain the right precen-
dence by using the following declarations (- is a built-in operator):

- op (800, xfy, [&]). % Conjunction
- op (850, xfy, [v]). % Disjunction
:— op (870, xfy, [=>]). % Implication
- op(880, xfy, [<=>]) % Equivalence

(a) Suppose that we represent a propositional interpretation as the list of the propo-
sitional variables that are true in the interpretation. Implement a Prolog predi-
cate satisfies (I,F) that holds if and only if interpretation I satisfies the
propositional logic formula F. For example,
satisfies([p, 9], (-p v g) & p) should succeed, while
satisfies([p], (-p v g) & p) should fail.

(b) Implement a Prolog predicate elimImpl (F, R) that holds if R is the result
of replacing all implications and double implications in propositional logic for-
mula F by their definitions in terms of the other logical connectives. For exam-
ple, elimImpl ((-p => gq) & (r <=> -s),R) should succeed with R
= (=(-p) vag) & (-r v -s) & (=(=s) v r).

(c) Implement a Prolog predicate nnf (¥, R) that holds if R is the result of putting
propositional logic formula F in negation normal form. A propositional logic
formula is in negation normal form if negation only appears in front of propo-
sitional variables and there are no nested negations. You may assume that F
contains no implications and double implications. For example,
nnf (- (p & —q),R) should succeed withR = (-p v g),and
nnf(-(p & -(g v —-r)),R) shouldsucceedwithR = (-p v g v -r).

(d) Implement a Prolog predicate cnf (F, R) that holds if R is the result of putting
propositional logic formula F in conjunctive normal form. A propositional logic
formula is in conjunctive normal form if it is a conjunction of disjunctions of
literals, where a literal is a propositional variable or its negation. You may
assume that F contains no implications and double implications and is already
in negation normal form. For example,
cnf ((p & —gq) v r,R) should succeed with
R=((pvr) & (-gvr)),
cnf((p & —q) v (r & —s),R) should succeed with
R= (((pvr)& (pv-s)) & (gvr) & (-gv -s)),and
cnf(p & (g v (r & s)),R) should succeed with
R=(p & (gviIr) & (gvs)).

Submit both your Prolog code in file g1 .p1 and your test results in the file
gltests.txt. Provide enough tests to convince yourself and the reader that your
implementation is correct. Document your code appropriately.

. [30 points] In this exercise, we use Prolog to implement a subset of an abstract pro-
cess algebra which can be used to analyze concurrent processes. Expressions in the
algebra describe the structure of a process constructed from primitive actions that
can be carried out in a particular system. An expression in a process algebra can be
tested to see if the process described by the expression has a particular property, for
example, whether the process can be proved to eventually terminate. Each primitive
action A in the process/system must be declared by asserting primAction (A) .

A process is then defined as one of the following:

e 0 (the empty process — nothing left to do), a primitive action,

e A > P:asequence of a primitive action A followed by a process P,

e P1 ? P2: anon-deterministic branching that either does process P1 or pro-
cess P2,

e P1 | P2:interleaved concurrent execution of process P1 and P2.
e P1 $ P2: synchronized concurrent execution of processeses P1 and P2.

e ProcName: a call to the procedure named ProcName.

Procedures are defined by asserting defproc (ProcName, Body) where ProcName
is a symbol that is the procedure’s name and Body is a process expression that is the
procedure’s body. When the procedure’s name occurs in a process expression, it can
be replaced by procedure’s body. Procedures can be recursive, for example:

defproc (iterDoSomething, doSomething > iterDoSomething ? 0).

which performs the primitive action doSomething 0 or more times.

We impose the following restrictions on recursive procedure definitions: their body
cannot contain the concurrent execution constructs; and they must always perform at
least one primitive action before making a recursive call.

Among the process composition operators we assume that sequence > has highest
precedence, followed by nondeterministic branch ?, then interleaved concurrency |,
and finally synchronous concurrency $. Parentheses can be used to override this.
You can obtain the right precendence in Prolog by using the following declarations:

:— op (700, xfy,>).
:— op(800,xfy,?).

% | 1s predefined as xfy with precedence 1100
:— op(1120,xfy,S) .

The execution of processes can be defined in terms of transitions. Let P1-A-P2
mean that process P 1 can do a single step by performing action A leaving process P2
remaining to be executed. We can define this relation as follows:

e 0 — A - Pisalways false.

e A — A — 0 holds (where A is a primitive action), i. e., an action that has
completed leaves nothing more to be done.

e (A > P) — A - P (where A is a primitive action), i.e., doing a step of a
sequence (A > P) involves doing the initial action A leaving P to be done
afterwards.

e (P1 ? P2) — A — PholdsifeitherP1 - A — P holds or
P2 - A - P holds.

e (P1 | P2) - A - PholdsifeitherP1 - A - P11 holds and

P = (P11 | P2),orP2 - A — P2lholdsandP = (P1 | P21)
e (P1 $ P2) — A — PholdsifbothP1 - A — P11 holds and

P2 — A — P2l holdsandP = (P11 | P21)

e ProcName - A - P holds if ProcName is the name of a procedure that
hasbody BandB - A - P holds.

We can define this in Prolog as follows:

A-A-0 :- primAct (7).

(A > P)-A-P :- primAct (A).

(Pl ? P2)-A-PR :— P1-A-PR ; P2-A-PR.

(P1 | P2)-A-(P1R | P2) :- P1-A-PI1R.

(P1 | P2)-A-(P1 | P2R) :— P2-A-P2R.

(P1L $ P2)-A-(P1R $ P2R) :— P1-A-P1R, P2-A-P2R.
PN-A-PR :- defproc(PN,PB), PB-A-PR.

We can also define a predicate final (P) that holds when process P may legally
terminate. The definition in Prolog is as follows:

final (0)

final(P1 ? P2):— final(P1l); final(P2).
final(P1 | P2):— final(Pl), final(P2).
final(P1 $ P2):— final(P1l), final(P2).
final (P) :— defproc(P,B), final (B).

An execution of a process is a sequence of transitions, which we will represent by a
list [P1, Al, P2, A2, ...]l,suchthatforalli > 0,P1i — Ai - Pi+1l.
A complete execution is an execution where the last process is £inal or cannot
make any further transitions.

Let’s look at a few simple examples:

° 1 > a2 > a3) hasonlyone complete execution: [(al > a2 > a3),

(a
al, (a2 > a3), a2z, a3, a3, 0]

e ((al > a2) | a3) has3 complete executions:

(
[((al > a2) | a3), al, (a2 | a3), a2, (0O | a3), a3, (O
I 0)],

[((al > a2) | a3), al, (a2 | a3), a3, (a2 | 0), a2, (0

| 0)],and

[((al > a2) | a3), a3, ((al > a2) | 0), al, (a2 | 0y,
a2z, (0] 0)1;

interleaved concurrency interleaves the actions of the component processes.

e (al $ al) hasonecomplete execution: [(al $ al), al, (0 $ 0)1;
when we use synchronous concurrency, both component processes advance.

e (al $ a2) has no executions; synchronous concurrent processes can only
advance if they perform the same action.

e pl where defproc (pl, al > pl) has the infinite execution [pl, al,
pl, al, ...].

Let’s now look at some more interesting examples.
Example 1:

This is a simple example of processes that can deadlock; the processes try to acquire
two locks in different orders.

Actions: acquirelLockl, acquirelLock2, releaselLockl, releaselLock2,
doSomething

Process definitions:

defproc (deadlockingSystem, userl | user2 $
lockls0O | lock2s0 | iterDoSomething).
defproc (userl, acquirelockl > acquirelLock2 > doSomething >
releaselock?2 > releaselockl).
defproc (user2, acquirelLock2 > acquireLockl > doSomething >
releaselockl > releaselock?2).
lockls0, acquireLockl > locklsl ? 0).
locklsl, releaseLockl > locklsO).

defproc
defproc

(
(
defproc(lock2s0, acquireLock2 > lock2sl ? 0).
defproc(lock2sl, releaselLock2 > lock2s0).
defproc (iterDoSomething, doSomething > iterDoSomething ? 0).
defproc (oneUserSystem, userl $ locklsO | lock2s0 | iterDoSomething).

The process deadlockingSystemmay deadlock. The single user version oneUserSystem
cannot deadlock.

Example 2:

In this example, there is producer process that generates data and a consumer process
that consumes it. The data is stored in a buffer can handle up to 3 items. The buffer
can overflow and underflow. One can use synchronization actions to avoid this.

5

Actions: produce, consume, underflow, overflow, notFull, notEmpty

Process definitions:

defproc (producerConsumerSyst,
producer | consumer | faults $ bufferS0).
producer, notFull > produce > producer).
consumer, notEmpty > consume > consumer) .
faults, underflow
bufferUF, notFull
produce

defproc
defproc
defproc
defproc

? overflow).
> produce > bufferUF ?
> bufferUF ?
consume > bufferUF).
defproc (buffer30, notFull > produce > bufferSl ?
produce > bufferSl ?

>

>

>

>

o~ o~ o~ —~

consume
defproc (buffersl, notFull
produce
consume

underflow > bufferUF).
produce > buffers2 ?
buffers2z ?
bufferso 2
notEmpty > consume > bufferS0).
defproc (bufferS2, notFull > produce > bufferS3 ?
produce > bufferS3
consume > buffersSl
notEmpty > consume
defproc (bufferS3, produce > overflow

?
?
> bufferSl).
>
consume > bufferS2 ?
>
?
?
>

bufferOF ?
notEmpty > consume buffers2).
defproc (bufferOF, produce > bufferOF
consume > bufferOF
notEmpty > consume
defproc (producerConsumerSystBuggy,
producerB | consumerB | faults $ bufferS0).
defproc (producerB, produce > producerB).
defproc (consumerB, consume > consumerB).

bufferOF) .

a) Define a Prolog predicate run (P, R) that holds iff R is a complete execution of
process P. Also define a print _run (R) predicate that prints executions in a
readable way. Test this (at least) on the oneUserSystemand deadlockingSystem
examples.

b) Define a Prolog predicate has_infinite_run (P) that holds iff process P has
an infinite run (this happens only if there is a there is a cycle in the configuration
graph). Test this (at least) on the examples above.

¢) Define a Prolog predicate deadlock_free (P) that holds iff process P cannot
reach a deadlocked configuration, i.e., a configuration where the process is not
final but cannot make any further transition. Test this (at least) on all the
examples above.

d) Define a Prolog predicate cannot_occur (S, A) that holds iff there is no ex-
ecution of process P where action A occurs (an instance of checking a safety
property). Test (at least) cannot_occur (P, overflow) on the two ver-
sions of the producer-consumer example.

e) Define a Prolog predicate whenever_eventually (S,Al, A2) that holds iff
in all executions of process P, whenever action A1 occurs, action A2 occurs
afterwards (a instance of checking a liveness property). Test (at least)
whenever_eventually (P, produce, consume) on the two versions of
the producer-consumer example.

For all the parts of the question, provide enough tests to convince yourself and the
reader that your implementation is correct. The tests can involve very simple pro-
cesses where it is easy to see what should happen. Submit both your Prolog code in
file g2.pl and your test results in the file g2tests.txt. Document your code
appropriately.

To hand in your report for this assignment, put all the required files in a directory a2answers
and submit it electronically by the deadline. To submit electronically, use the following
Prism lab command:

submit 3401 a2 aZ2answers

Your Prolog code should work correctly on Prism.

