
EECS 3101: Design and Analysis of Algorithms
Tutorial 7 – Solutions

1. Given lists of positive integers A = a1 . . . an, B = b1, . . . , bn, describe a greedy algorithm
to rearrange A,B so as to maximize

∏n
i=1 a

bi
i .

Solution:

Algorithm: sort both A,B in non-increasing order.

Correctness proof: Suppose there is a optimal solution different from that produced by
the greedy algorithm above. Look at the greedy solution and consider the first place
j it differs from the optimal solution. Since the quantity being maximized always
contains

∑n
i=1 bi factors, the greedy solution uses bj factors of aj while the optimal

solution uses fewer aj factors. So the optimal solutions uses a smaller number to make
up the same number of factors implying that it must be of lower magnitude than the
greedy solution, which contradicts its optimality.

2. Clickomania: https://icpcarchive.ecs.baylor.edu/external/45/4564.pdf

Solution: This is a problem where there is no maximization – instead the solution is
TRUE or FALSE.

The key to this problem is given in the decription

Some facts are known about solvable puzzles:
1. The empty string is solvable.
2. If x and y are solvable puzzles, so are xy, AxA, and AxAyA for any

uppercase letter A.
3. All other puzzles not covered by the rules above are unsolvable.

This suggests we can construct a dynamic programming solution. Suppose we denote
by S[i, j] the solvability of the string A[i . . . j] of the input. Then we can write the
following recurrence for S[i, j]:

S[i, j] = T if i > j

= F if i = j

= [(A[i] = A[j]) ∧ S[i + 1, j − 1]]

∨j−1
k=i+1[(A[i] = A[k] = A[j]) ∧ S[i + 1, k − 1] ∧ S[k + 1, j − 1]]

Much like the problem on optimal matrix multiplication this problem fills the table of
S[i, j] values starting from the main NW-SE diagonal (corresponding to i = j) and
filling in similar diagonals (corresponding to j − i = constant) to the top right corner
(corresponding to i = 1, j = n.

The proof of correctness in trivial and is omitted. The running time is O(n3), since we
fil in a table of n2 entries and each entry is computed in O(n) time. It can be shown
that the algorithm takes Θ(n3) time, but the proof is omitted.

1



3. Given binary strings x, y, z, design a dynamic programming algorithm that checks if z
is an interleaving of x, y.

Not solved in class.

2


