
EECS 3101: Design and Analysis of Algorithms
Tutorial 7 – Solutions

1. (4 points) Suppose An = {a1, a2, . . . , an} is a set of distinct coin types, where each
ai is an integer, 1 ≤ i ≤ n. Suppose also that a1 < a2 < . . . < an. The coin
changing problem is defined as follows. Given an integer C, find the smallest number
of coins from An that add up to C given that an unlimited number of coins of each
type are available. Design a dynamic programming algorithm that take inputs An, C
and outputs the minimum number of coins needed to solve the coin-changing problem.
Prove optimal substructure and analyze the running time of your algorithm.

NOTE: A solution may not exist for certain instances of the problem. In such cases
the algorithm should output ”No solution”.

Solution: Since we do not assume that a1 = 1, we may not be able to make change
for all amounts. For example if a1 = 2, we cannot make change for 1 cent.

Again, there are many possible dynamic programming formulations for this problem.
One of them is as follows. Let N(a, i) be the minimum of coins needed to make change
for amount a using coins of type 1, 2, . . . , i. Then the answer to the given problem is
N(C, n). As usual, we need to prove optimal substructure to be sure that dynamic
programming can be used.

Optimal substructure: Suppose you know that the optimal solution for the problem
N(C, n) contains mn coins of type n. Then we must show that the subproblem N(C−
anmn, n− 1) is solved optimally by the coins of denomination 1 through n− 1 in the
optimal solution. This is the usual cut-and-paste argument. If there is a way to make
change for this problem using fewer coins, simply augment this solution with mn coins
of type n. Then this augmented solution for N(C, n) makes change for amount C using
fewer coins than the optimal which is a contradiction. Therefore, the problem has the
optimal substructure property.

Recurrence: The number of coins, mn of type n in an optimal solution must satisfy
0 ≤ mn ≤ bC/anc. This gives us the following recurrence: N(a, 1) = a, 1 ≤ a ≤ C,
and for i > 1.

N(a, i) = min
0≤j≤ba/cic

j + N(a− jai, i− 1).

Note that the algorithm must handle the case where no solution exists. One way to
do this is to define N(a, i) =∞ when a < 0.

Algorithm: This recurrence can be used to fill up the C × n table N(a, i) row-by-row
(i.e., i = 1, . . . , n), from left to right (i.e., a = 1, 2, . . . , C). The number of coins
actually used can be computed if the value of j at each step is stored in an auxilliary
array.

Running time: For each row i, the number of steps required to compute every cell in the
table is O(a/ci). Assuming that the denominations ci are constants (i.e. independent
of C) an upper bound on the total number of steps required is O(C2n).

1



Alternative solution: It turns out that a different formulation gives a more efficient
solution. Let N(a) be the minimum of coins needed to make change for amount a.
Then the answer to the given problem is N(C). Again, we need to prove optimal
substructure to be sure that dynamic programming can be used.

Optimal substructure: Suppose you know that the optimal solution for the problem
N(C) contains a coin of type n. Then we must show that the subproblem N(C − an)
is solved optimally by the remaining coins in the optimal solution. The usual cut-
and-paste argument works. If there is a way to make change for this problem using
fewer coins, simply augment this solution with a coins of type n. Then this augmented
solution for N(C) makes change for amount C using fewer coins than the optimal which
is a contradiction. Therefore, the problem has the optimal substructure property.

Recurrence: If we number the coins in an optimal solution in some order, the last coin
is of type n for some n. This gives us the following recurrence: N(ai) = 1, 1 ≤ i ≤ n,
and for other a > 1.

N(a) = 1 + min
0≤j≤n

{N(a− aj)}.

In the above, we use the convention N(a) =∞ if a < 0.

Algorithm: This recurrence can be used to fill up the C × 1 table N(a), from left to
right (i.e., a = 1, 2, . . . , C). The coins actually used can be computed if the value of j
at each step is stored in an auxilliary array.

Running time: For each row i, the number of steps required to compute every cell
in the table is O(n). Thus an upper bound on the total number of steps required is
O(Cn).

2. Problem 15.4-5 on page 356 in Edition 2, page 397 in Edition 3.

Solution: The simplest and most elegant solution to this problem is the following:
sort the sequence A[1..n] by value and store it in array B[1..n], and then compute
LCS(A,B). The actual sequence can be constructed by the technique described in the
book to get the longest common subsequence.

Correctness: We need to prove that the algorithm described above is correct; i.e., if
the length of the LCS is ` and the optimal solution has length s, we need to prove that
` = s.

First, we prove that ` ≤ s. The LCS provides a sequence of numbers whose indices are
increasing and values are increasing. Clearly this sequence must have length no larger
than the optimal solution. Next, we show that s ≤ `. Given an optimal solution to our
problem, it is a subsequence of A and it is also a subsequence of B. In other words, it
is a common subsequence of the sequences A,B defined above. Using the correctness
of LCS, we have ` ≤ s. Therefore, it follows that s = `.

Running time: The two sorts take Θ(n log n) time. The LCS takes Θ(n2) time. So the
running time of our algorithm is Θ(n2).

Solution 2: To find the LIS without using LCS, define the quantity T (m) to be the
length of the LIS of A[1..m] that includes A[m]. The latter condition allows us to

2



decide easily if a new element can be added to the existing LIS, since we know the last
value of the LIS.

Then, the LIS of A[1..n] is max1≤m≤n T (m).

The recurrence for T (m) is : T (m) = 1 if m = 1, and
T (m) = 1 + maxj T (j) where m > 1, 1 ≤ j < m and A[j] ≤ A[m].

The correctness proof is trivial, using the standard cut-and-paste argument and is
omitted.

The numbers T (j) are evaluated starting from j = 1 and ending in j = n. Evaluating
T (j) takes time O(j) and thus the algorithm runs in time Θ(n2).

3


