
Greedy Algorithms 1

1. Greedy algorithms – Ch 16.

Next…

Greedy Algorithms 2

Basic ideas:

1. In order to get an optimal solution, just keep grabbing
what looks best.

2. No backtracking (reversing earlier choices) allowed.
3. Local algorithm; often produces globally optimal

solutions.
4. Typically the algorithm is simple. The proof that a greedy

algorithm produces an optimal solution may be harder.

“Every two year old knows the greedy algorithm”

Greedy algorithms for optimization problems

Greedy Algorithms 3

Game show problem: Choose the best m prizes.

Iterative Greedy Algorithm:

Loop: grabbing the best, then second best, ...
 if it conflicts with committed objects

 or fulfills no new requirements.
 Reject this next best object
 else
 Commit to it.

Making change problem: Find the minimum # of quarters,
dimes, nickels, and pennies that total to a given amount.

Keep grabbing the largest coin that keeps the solution cost
less than or equal to the given amount.

Greedy algorithm examples

Greedy Algorithms 4

Example: 71 cents

Goal: Find an optimal non-conflicting solution.

Solution: A subset of the coins that total the amount.
 (25, 25, 10, 10, 1)

Cost of Solution: The number of objects in solution or the
sum of the costs of objects (5)

Making change

Greedy Algorithms 5

Problem: Find the minimum number of 4, 3, and 1 cent
coins to make up 6 cents.

Problem: Coins: 4,3 and 1 cents. Make change for 6 cents.

Greedy solution: (4, 1, 1) cost 3.
Optimal Solution: (3,3) cost 2.

The greedy algorithm does not always work

Lessons:

1. Not all problems admit greedy algorithms.

2. For those that do, all greedy algorithms do not work.

3. The proof that a greedy algorithm works is subtle but
essential.

Greedy Algorithms 6

Loop Invariant: There is at least one optimal solution
consistent with the choices made so far.

Initially no choices have been made and hence all optimal
solutions are consistent with these choices.

It is often easier to carry out the proof by contradiction.

For denominations 1,5,10,25 cents, prove optimality for
amount C cents.

Proving optimality of greedy algorithms

Greedy Algorithms 7

Consider solutions from greedy algorithm Sol(G) and that
from optimal Sol(O). Sort both in decreasing order.

Look at first place (k) where they differ. Sol(G) MUST
contain a coin of higher denomination.

Case 1: Sol(G) has a 5 c coin, Sol(O) does not. Sol(O) must
make 5 c with 1 c; cannot be optimal.

Case 2: Sol(G) has a 10 c coin, Sol(O) does not. Must make
10 c with 5 c and 1 c. Sol(O) cannot be optimal.

Case 3: Sol(G) has a 25 c coin, Sol(O) does not. If Sol(G)
has 2 or more 25 c coins, Sol(O) must make 50 cents
with 10c, 5c, 1c; cannot be optimal. Else Sol(O) must
use 1 or 2 or 3 or more 10c; in each case, Sol(O) must
be suboptimal.

Proving optimality of coin changing

Greedy Algorithms 8

Q: How is this consistent with

“LI: There is at least one optimal solution consistent with the
choices made so far.”

A: Take a different view of what we have done:

We proved that the next coin of Sol (G) agrees with that of
some Sol(O).

Specifically, we proved that if no solution in Sol(O) agrees
with Sol(G), then Sol(O) cannot be optimal.

Proving optimality of coin changing

Greedy Algorithms 9

Problem: Given n commodities, with values v_i dollars and
weight w_i pounds, and a knapsack that can carry
maximum weight K, to put in the knapsack a set of items
that maximize total value. You can take arbitrary
fractions of any item.

Another example: Knapsack problem

Greedy algorithm:

Sort in decreasing order of v_i/w_i.

Fill knapsack greedily.

Correctness: Compare Sol(G) with Sol(O), with both
solutions sorted in decreasing order of v_i/w_i. If they
differ, then prove that by replacing the object in Sol(O) with
the object in Sol(G), we violate the optimality of Sol(O).

Greedy Algorithms 10

Huffman codes, greedy scheduling (Ch 16).

Next: more examples of greedy algorithms

Greedy Algorithms 11

Let’s think for a moment: when can you compress data?

A real problem: data compression

Key question: Do you allow information to be lost?

Answer: depends on the application:

Music/movies: small loss ok.

Text/data file transmission/storage: no loss permitted.

Lossy compression: uses signal processing techniques.

- Used in computer vision, image and speech processing.

- Utilizes the fact that some part of the data (signal) can be

discarded without perceptible quality loss.

Greedy Algorithms 12

Let’s think for a moment: if you cannot throw away any
data, how can you reduce its size?

Lossy data compression

Answer: by removing redundancy in the data.

E.g.: My wife sends me an sms “where are you?”

I could answer “I am at York”, “at York”, “York”.

This is really lossy compression!

Aside: What about the obvious redundancy in language?

(utilized by sms-language, e.g. I lv u, wt 4 me …)

Why/when is redundancy useful?

Greedy Algorithms 13

Assume: message is given, and cannot be altered.

How can you reduce the size?

Lossless data compression

Ans: one way is to use variable length encodings.

If there are k characters in the alphabet, each character

could be encoded using log k bits (fixed length encoding),

or some characters could use 1 bit, some 2 bits, etc.

Tradeoff: ease of parsing.

Given: 011100100 011100 010 011001100 001

 011100100 011100010011001100001

Greedy Algorithms 14

We want unique parse trees (PREFIX codes).

Lossless data compression

Idea: the more frequent the letter, the shorter its encoding.

Greedy Algorithms 15

Fixed and variable length codes

Greedy Algorithms 16

Huffman codes - algorithm

Greedy strategy: select the two least weight nodes and make
 them children of the tree.
Replace the nodes with a new node with the sum of the weights

Greedy Algorithms 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Greedy Algorithms 18

Optimality proof

Lemma: If x,y have the lowest frequencies, then there is an
optimal prefix code in which they are sibling leaves.

Greedy Algorithms 19

Optimality proof

Note: If a,b have the lowest frequencies, then the greedy
algorithm replaces them by another “character” c whose
frequency is the sum of that of a,b.

Inductive argument! Suppose that the greedy algorithm
is optimal for k-1 letter
alphabets.

For a k letter alphabet, it produces a tree S with x,y as
children. Inductively, the tree S” obtained by fusing nodes
x,y must be optimal.
Suppose there exists a lower cost tree T. There must exist
a tree T’ with the same lower cost with x,y as children
(previous lemma). Fuse nodes x,y in T’ to get T”. T” has
strictly lower cost than S”; CONTRADICTION!.

Greedy Algorithms 20

Running time

Naively, this requires O(n2) time.
With priority queues implemented with heaps, Extract-Min
takes logarithmic time.
This gives total running time O(n log n).

Greedy Algorithms 21

More examples of greedy algorithms

The Job/Event Scheduling Problem

Inputs:
Jobs: Events with starting and finishing times
<<s1,f1>,<s2,f2>,… ,<sn,fn>>.

Solution: Schedules: A set of events that do not overlap.
Cost of Solution: The number of events scheduled.

Goal: Given a set of events, schedule as many as possible.

Greedy Algorithms 22

Possible Greedy Criteria

The Shortest Event

Counter Example

Does not book the room for a long
period of time.

Motivation:

Optimal

Schedule first

Optimal

Greedy Criteria:

Greedy Algorithms 23

Possible Greedy Criteria

The Earliest Starting Time

Counter Example

Common scheduling algorithm.Motivation:

Optimal

Schedule first

Optimal

Greedy Criteria:

Greedy Algorithms 24

Possible Greedy Criteria

Conflicting with the Fewest Other Events

Counter Example

So many can still be scheduled.Motivation:

Schedule first
Optimal

Optimal

Greedy Criteria:

Greedy Algorithms 25

Possible Greedy Criteria

Works!

Earliest Finishing Time

Schedule the event who will free up your
room for someone else as soon as possible.

Motivation:

Greedy Criteria:

Greedy Algorithms 26

Earliest Finishing Time

Greedy Algorithms 27

The Greedy Algorithm

Greedy Algorithms 28

Optimality proof

Key step: Suppose am is the job with the earliest finish time.
Then there is an optimal schedule which contains am.

Consider any optimal solution S. Sort the jobs by increasing
finish times. If the first job is am, we are done.
Else, the first job is ak different from am . Consider the
schedule S” = S – {ak} +{am}.

S” must have the same number of jobs as in S, since am

does not conflict with any job that ak did not conflict with.
Therefore S” is optimal.

Greedy Algorithms 29

Running Time

Checking whether next event i conflicts with previously
committed events requires

only comparing it with the last such event.

Running time is O(n), assuming that the algorithm is given
a list of jobs already sorted by finish times.

	Next…
	Greedy algorithms for optimization problems
	Greedy algorithm examples
	Making change
	The greedy algorithm does not always work
	Proving optimality of greedy algorithms
	Proving optimality of coin changing
	Slide 8
	Another example: Knapsack problem
	Next: more examples of greedy algorithms
	A real problem: data compression
	Lossy data compression
	Lossless data compression
	Lossless data compression
	Fixed and variable length codes
	Huffman codes - algorithm
	PowerPoint Presentation
	Optimality proof
	Slide 19
	Running time
	More examples of greedy algorithms
	Possible Greedy Criteria
	Possible Greedy Criteria
	Slide 24
	Slide 25
	Earliest Finishing Time
	The Greedy Algorithm
	Slide 28
	Running Time

