Minimum and Maximum

Problem: Find the maximum and the minimum of n elements.

- Naïve algorithm 1: Find the minimum, then find the maximum -- $2(n-1)$ comparisons.
- Naïve algorithm 2: Find the minimum, then find the maximum of $n-1$ elements -- $(n-1) + (n-2) = 2n - 3$ comparisons.
Minimum and Maximum – better algorithms

Problem: Find the maximum and the minimum of n elements.

Approach 1
• Sort $n/2$ pairs. Find min of losers, max of winners.
• # comparisons: $n/2 + n/2 - 1 + n/2-1 = 3n/2 – 2$.

Is this the best possible?

Approach 2
• Divide into $n/2$ pairs. Compare the first pair, set winner to current max, loser to current min.
• Sort next pair, compare winner to current max, loser to current min.

comparisons: $1 + 3(n/2 –1) = 3n/2 – 2$.
Lower bounds for the MIN and MAX

Claim: Every comparison-based algorithm for finding both the minimum and the maximum of n elements requires at least \((3n/2)-2\) comparisons.

Idea: Use similar argument as for the minimum

Max = maximum and Min=minimum only if:
- Every element other than min has won at least 1
- Every element other than max has lost at least 1
“Proof” from the web: For each comparison, \(x < y \), score a point if this is first comparison that \(x \) loses or if \(y \) wins and 2 points if both occur. Before the algorithm can terminate \(n-2 \) must both win and lose (since they aren't min or max) and 2 elements must either win or lose. Thus, \(2(n-2)+2 \) points are scored before termination.

Define \(A \) to be the set of elements that have not won or lost a comparison. All comparisons between elements in \(A \) must score 2 points. All other comparisons can score at most 1 point. Let \(X \) be \(A-A \) comparisons. Let \(Y \) be number of other comparisons. We want to minimize \(X+Y \) such that \(2X+Y \geq 2n-2 \& X \leq n/2 \) (assume \(n \) is even). Given the constraints we want to make \(X \) as big as possible. So set \(X=n/2 \). Then \(Y \geq 2n-2-2X \Rightarrow Y \geq 2n-2-n \Rightarrow Y \geq n-2 \Rightarrow X+Y \geq n/2 + n - 2. \)
Is the previous proof correct?
Lower bounds for the MIN and MAX

Idea: Define 4 sets:

U: has not participated in a comparison
W: has won all comparisons
L: has lost all comparisons
N: has won and lost at least one comparison

Note: All these sets are disjoint.

1. Initially all elements in U.
2. Finally no elements in U, 1 each in W, L and n-2 in N.
3. Each element in N comes from U via W or L.
Idea: Score a point when an element enters W or L or N for the first time.

Question: Can we ensure that only U-U comparisons result in two points being scored?

Answer: YES! The adversary argument!

The adversary constructs a worst-case input by revealing as little as possible about the inputs.
Lower bounds for the MIN and MAX - contd

Adversary strategy:
U-U: any
U-W: make element of W winner
U-L: make element of L loser
U-N: any
W-W: any (be consistent with before)
W-L/N: make element of W winner
L-L: any (be consistent with before)
L-N: make element of L loser
Lower bounds for the MIN and MAX – contd.

We need to score $2n-2$ points. At most $n/2$ U-U comparisons can be made – gives n points.

To move $n-2$ elements to N, we need another $n-2$ comparisons.
Q: Can we beat the $\Omega(n \log n)$ lower bound for sorting?

A: In general no, but in some special cases YES!

Ch 7: Sorting in linear time
Non-Comparison Sort – Bucket Sort

- Assumption: uniform distribution
 - Input numbers are uniformly distributed in [0,1).
 - Suppose input size is n.

- Idea:
 - Divide [0,1) into n equal-sized subintervals (buckets).
 - Distribute n numbers into buckets
 - Expect that each bucket contains few numbers.
 - Sort numbers in each bucket (insertion sort as default).
 - Then go through buckets in order, listing elements

Can be shown to run in linear-time on average
Example of BUCKET-SORT

Figure 8.4 The operation of BUCKET-SORT. (a) The input array $A[1..10]$. (b) The array $B[0..9]$ of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval $[i/10, (i + 1)/10)$. The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.
Bucket Sort - generalizations

• What if input numbers are NOT uniformly distributed?
• What if the distribution is not known a priori?
Non-Comparison Sort – Counting Sort

- Assumption: n input numbers are integers in the range [0,k], k=O(n).

- Idea:
 - Determine the number of elements less than x, for each input x.
 - Place x directly in its position.
Counting Sort - pseudocode

Counting-Sort(A,B,k)
• for $i \leftarrow 0$ to k
 • do $C[i] \leftarrow 0$
• for $j \leftarrow 1$ to length[A]
 • do $C[A[j]] \leftarrow C[A[j]] + 1$
 • // $C[i]$ contains number of elements equal to i.
• for $i \leftarrow 1$ to k
 • do $C[i] = C[i] + C[i-1]$
 • // $C[i]$ contains number of elements $\leq i$.
• for $j \leftarrow \text{length}[A]$ down to 1
 • do $B[C[A[j]]] \leftarrow A[j]$
 • $C[A[j]] \leftarrow C[A[j]] - 1$
Figure 8.2 The operation of COUNTING-SORT on an input array $A[1..8]$, where each element of A is a nonnegative integer no larger than $k = 5$. (a) The array A and the auxiliary array C after line 4. (b) The array C after line 7. (c)–(e) The output array B and the auxiliary array C after one, two, and three iterations of the loop in lines 9–11, respectively. Only the lightly shaded elements of array B have been filled in. (f) The final sorted output array B.
Counting Sort - analysis

1. for $i \leftarrow 0$ to k $\Theta(k)$
2. do $C[i] \leftarrow 0$ $\Theta(1)$
3. for $j \leftarrow 1$ to length[A] $\Theta(n)$
 do $C[A[j]] \leftarrow C[A[j]]+1$ $\Theta(1)$ ($\Theta(1) \Theta(n) = \Theta(n)$)
4. // $C[i]$ contains number of elements equal to i. $\Theta(0)$
5. for $i \leftarrow 1$ to k $\Theta(k)$
 do $C[i]=C[i]+C[i-1]$ $\Theta(1)$ ($\Theta(1) \Theta(n) = \Theta(n)$)
6. // $C[i]$ contains number of elements $\leq i$. $\Theta(0)$
7. for $j \leftarrow$ length[A] downto 1 $\Theta(n)$
 do $B[C[A[j]]] \leftarrow A[j]$ $\Theta(1)$ ($\Theta(1) \Theta(n) = \Theta(n)$)
8. $C[A[j]] \leftarrow C[A[j]]-1$ $\Theta(1)$ ($\Theta(1) \Theta(n) = \Theta(n)$)

Total cost is $\Theta(k+n)$, suppose $k=O(n)$, then total cost is $\Theta(n)$.
So, it beats the $\Omega(n \log n)$ lower bound!
Stable sort

- Preserves order of elements with the same key.
- Counting sort is stable.

Crucial question: can counting sort be used to sort large integers efficiently?
Radix sort

Radix-Sort(A,d)
• for i ← 1 to d
• do use a stable sort to sort A on digit i

Analysis:
Given n d-digit numbers where each digit takes on up to k values, Radix-Sort sorts these numbers correctly in $\Theta(d(n+k))$ time.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1019</td>
<td>2231</td>
<td>1019</td>
<td>1019</td>
<td>1019</td>
</tr>
<tr>
<td>3075</td>
<td>3075</td>
<td>2225</td>
<td>3075</td>
<td>2225</td>
</tr>
<tr>
<td>2225</td>
<td>2225</td>
<td>2231</td>
<td>2225</td>
<td>2231</td>
</tr>
<tr>
<td>2231</td>
<td>1019</td>
<td>3075</td>
<td>2231</td>
<td>3075</td>
</tr>
</tbody>
</table>

Sorted!

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1019</td>
<td>1019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3075</td>
<td>2231</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2231</td>
<td>2225</td>
<td>3075</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not sorted!
Order statistics: The i^{th} order statistic of n elements $S=\{a_1, a_2, \ldots, a_n\}$: i^{th} smallest elements

- Minimum and maximum, Median
- Finding the kth largest element in an unsorted array.

Already seen:

1. $k=1$: $\Theta(n)$ algorithm optimal.
2. Also, Heapify + Extract-max: $\Theta(n)$ algorithm. Same bounds hold for any constant k.
3. Sorting solves it for any k. $\Theta(n \log n)$ algorithm.

What about $k=n/2$? Can we do better than $\Theta(n \log n)$ algorithm?
To select the i^{th} smallest element of $S=\{a_1, a_2, \ldots, a_n\}$

- Can we use PARTITION?
 - if we are very lucky, we will get it in the first try!
 - otherwise we should have a smaller set to recurse on.

- No guarantee of being lucky!
 How can we guarantee a significantly smaller set?

The algorithm is the most complicated divide-and-conquer algorithm in this course!
Order Statistics

1. Divide \(n \) elements into \(\left\lfloor n/5 \right\rfloor \) groups of 5 elements.
2. Find the median of each group.
3. Use SELECT recursively to find the median \(x \) of the above \(\left\lfloor n/5 \right\rfloor \) medians.
4. Partition using \(x \) as pivot, and find position \(k \) of \(x \).
5. If \(i = k \) return
 else recurse on the appropriate subarray.

What kind of split does this produce?
The Way to Select x

Divide elements into $\left\lceil \frac{n}{5} \right\rceil$ groups of 5 elements each.
Find the median of each group
Find the median of the medians

At least $(3n/10) - 6$ elements $< x$

At least $(3n/10) - 6$ elements $> x$

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles, and each group occupies a column. The medians of the groups are whitened, and the median-of-medians x is labeled. (When finding the median of an even number of elements, we use the lower median.) Arrows are drawn from larger elements to smaller, from which it can be seen that 3 out of every full group of 5 elements to the right of x are greater than x, and 3 out of every group of 5 elements to the left of x are less than x. The elements greater than x are shown on a shaded background.
Analysis of SELECT

- Steps 1, 2, 4 take $O(n)$.
- Step 3 takes $T(\lceil n/5 \rceil)$.
- Let us see step 5:
 - At least half of medians in step 2 are $\geq x$, thus at least $\lceil 1/2 \lceil n/5 \rceil \rceil - 2$ groups contribute 3 elements which are $\geq x$. i.e., $3(\lceil 1/2 \lceil n/5 \rceil \rceil - 2) \geq (3n/10)-6$.
 - Similarly, the number of elements $\leq x$ is also at least $(3n/10)-6$.
 - Thus, $|S_1|$ is at most $(7n/10)+6$, similarly for $|S_3|$.
 - Thus SELECT in step 5 is called recursively on at most $(7n/10)+6$ elements.
- Recurrence is:
 \[T(n)= \begin{cases}
 O(1) & \text{if } n< 140 \\
 T(\lceil n/5 \rceil)+T(7n/10+6)+O(n) & \text{if } n \geq 140
 \end{cases} \]
Solve recurrence by substitution

- Suppose $T(n) \leq cn$, for some c.
- $T(n) \leq c \left\lceil n/5 \right\rceil + c(7n/10 + 6) + an$
 \[\leq cn/5 + c + 7/10cn + 6c + an\]
 \[= 9/10cn + an + 7c\]
 \[= cn + (-cn/10 + an + 7c)\]
 - Which is at most cn if $-cn/10 + an + 7c < 0$.
 - i.e., $c \geq 10a(n/(n-70))$ when $n > 70$.

- So select $n = 140$, and then $c \geq 20a$.

Note: n may not be 140, any integer > 70 is OK.
Implication for Quicksort

• Worst case improves to $O(n \log n)$
 BUT...
1. Problem 9.3-7: Describe an O(n) algorithm that, given a set S of n distinct numbers and a positive integer k <= n, determines the k numbers in S that are closest to the median of S.

2. Problem 9.3-8: Let X[1..n], Y[1..n] be two sorted arrays. Give an O(lg n) algorithm to find the median of all 2n elements in arrays X,Y.