Minimum and Maximum
Problem: Find the maximum and the minimum of n elements.

* Naive algorithm 1: Find the minimum, then find the
maximum -- 2(n-1) comparisons.

* Nalive algorithm 2: Find the minimum, then find the
maximum of n-1 elements -- (n-1) + (n-2) = 2n -3
comparisons.

Minimum and Maximum - better algorithms

Problem: Find the maximum and the minimum of n elements.

Approach 1
*Sort n/2 pairs. Find min of losers, max of winners.
comparisons: n/2 + n/2 -1 + n/2-1 = 3n/2 -2.
Is this the best possible?
Approach 2

*Divide into n/2 pairs. Compare the first pair, set winner to
current max, loser to current min.

*Sort next pair, compare winner to current max, loser to
current min.

#comparisons: 1 + 3(n/2 -1) = 3n/2 -2.

Lower bounds for the MIN and MAX

Claim: Every comparison-based algorithm for finding
both the minimum and the maximum of n elements
requires at least (3n/2)-2 comparisons.

ldea: Use similar argument as for the minimum
Max = maximum and Min=minimum only If:
Every element other than min has won at least 1
Every element other than max has lost at least 1

A proof?

“Proof” from the web: For each comparison, x<y, score a point
If this is first comparison that x loses or if y wins and 2
points if both occur. Before the algorithm can terminate n-2
must both win and lose (since they aren't min or max) and 2
elements must either win or lose. Thus, 2(n-2)+2 points are
scored before termination.

Define A to be the set of elements that have not won or lost
a comparison. All comparisons between elements in A must
score 2 points. All other comparisons can score at most 1
point. Let X be A-A comparisons. Let Y be number of other
comparisons. We want to minimize X+Y such that 2X+Y >
2n-2 & X < n/2 (assume n is even). Given the constraints
we want to make X as big as possible. So set X=n/2. Then
Y>2n-2-2X=Y2>22n-2-n=Y>n-2= X+tY>n/2+n- 2.

Is the previous proof correct?

Lower bounds for the MIN and MAX

ldea: Define 4 sets:

U: has not participated in a comparison

W: has won all comparisons

L: has lost all comparisons

N: has won and lost at least one comparison

Note: All these sets are disjoint.
1. Initially all elements in U.

2. Finally no elements in U, 1 each in W,L and n-2 in N.
3. Each element in N comes from U via W or L.

Lower bounds for the MIN and MAX - contd

ldea: Score a point when an element enters W or L or N for
the first time.

Question: Can we ensure that only U-U comparisons result in
two points being scored?

Answer: YES! The adversary argument!

The adversary constructs a worst-case input by revealing as
little as possible about the inputs.

Lower bounds for the MIN and MAX - contd

Adversary strategy:

U-U: any

U-W: make element of W winner
U-L: make element of L loser

U-N: any

W-W: any (be consistent with before)
W-L/N: make element of W winner
L-L: any (be consistent with before)
L-N: make element of L loser

Lower bounds for the MIN and MAX - contd.

We need to score 2n-2 points. At most n/2 U-U comparisons
can be made — gives n points.

To move n-2 elements to N, we need another n-2
comparisons.

Next: Linear sorting

Q: Can we beat the €2(n log n) lower bound for
sorting?

A: In general no, but in some special cases
YES!

Ch 7: Sorting In linear time

Non-Comparison Sort — Bucket Sort

* Assumption: uniform distribution
— Input numbers are uniformly distributed in [0,1).
— Suppose input size is n.

* |dea:
— Divide [0,1) into n equal-sized subintervals (buckets).
— Distribute n numbers into buckets
— EXxpect that each bucket contains few numbers.

— Sort numbers in each bucket (insertion sort as
default).

— Then go through buckets in order, listing elements
Can be shown to run in linear-time on average

Example of BUCKET-SORT

A B
| .78 0|/
2 117 || =t 12] ——>.17]|
3 .39 2| ——>=.21] — e 26|/
4 1.26 3| —+—=>.39] 7
5 .72 4 |7
6 1.94 5 [
7 1.21 6| —+>.68|/
8 .12 T EEs— il i 181/
9 .23 8|
10 {.68 9| 94|/
(a) (b)

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1 .. 10]. (b) The array B[0. . 9]
of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open
interval [//10, (i 4+ 1)/10). The sorted output consists of a concatenation in order of the lists
B[0], B[1]...., B[9].

Bucket Sort - generalizations

* What if input numbers are NOT uniformly
distributed?

* What if the distribution is not known a priori?

Non-Comparison Sort — Counting Sort

* Assumption: n input numbers are integers in the
range [0,k], k=O(n).
* |dea:

— Determine the number of elements less than
X, for each input x.

— Place x directly in its position.

Counting Sort - pseudocode

Counting-Sort(A,B,k)
. for i«<—0Otok

. do C[i] «-0
* forj <1 tolength[A]
. do C[A[j]] «CI[A[/]]*+1

* // C[i] contains number of elements equal to i.
 fori<1tok
. do C[i/|=CI[i]+CJi-1]
* // CJi] contains number of elements < i.
 forj <length[A] downto 1
do B[C[A[/]]] <Al/]

C[A[]] <C[A[/]]-1

Counting Sort - example

12 4 5 6 7 1 2 3 4 5 6 7 8
0 1 2 3 4 5 Cl2]2 717 0 1 2 3 4 5
cli2101213 1 Ci2121416|71]8
(a) (b) (c)
1 2 3 4 5 6 7 8 I 2 3 4 5 6 7 8
d [EH B o BB L a sl 8
0 1 2 3 4 5 0 1 2 BlOj0[2]2]|3i3(3]|5
C 21416 Clli2i4]5 3
(d) (e) (f)

Figure 8.2 The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than & = 5. (a) The array A and the auxiliary array C after
line 4. (b) The array C after line 7. (¢c)—(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 9-11, respectively. Only the lightly shaded elements of
array B have been filled in. (f) The final sorted output array B.

Counting Sort - analysis

1. fori<Otok O(k)

2. do C[i] <0 O(1)

3. forj <1 tolength[A] O(n)

4. do C[A[/]] «-C[A[/j]]*] O(1) ©(1) B(n)= B(n))
5. // C][i] contains number of elements equal to i. ®(0)

6. fori<l1tok O(k)

7. do C[i/]=C[i]+C[i-1] O(1) (1) O(n)= B(n))
8. // Cl[i] contains number of elements < ;. ®(0)

9. forj «<length[A] downto 1 O(n)

10. do B[C[A[/]]] <-A[/] O(1) (B(1) O(n)= ()
1. CIA[/]] <C[A[/]]-1 O(1) (B(1) O(n)= ()

Total cost 1s ®(k+n), suppose k=0(n), then total cost is O(n).
So, it beats the (2(n log n) lower bound!

Stable sort

 Preserves order of elements with the same
key.
* Counting sort is stable.

Crucial guestion: can counting sort be used to
sort large integers efficiently?

Radix sort

Radix-Sort(A,d)
 fori<1ltod
. do use a stable sort to sort A on digit |

Analysis:
Given n d-digit numbers where each digit takes on
up to k values, Radix-Sort sorts these numbers

correctly in ®(d(n+k)) time.

1019
3075
2225
2231

Radix sort - example

2231
3075
2225
1019

1019
2225
2231
3075

1019
3075
2225
2231

1019
3075
2231
2225

1019
2225
2231
3075

1019
2231

2225
3075

Sorted!

Not
sorted!

Next: Medians and Order Statistics (Ch. 9)

Order statistics: The It order statistic of n elements
S={a,, a,,..., a,} : I smallest elements

*Minimum and maximum, Median
*finding the kth largest element in an unsorted array.

Already seen:

1. k=1: ®(n) algorithm optimal.

2. Also, Heapify + Extract-max: ®(n) algorithm.
Same bounds hold for any constant k.

3. Sorting solves it for any k. ®(n log n) algorithm.

What about k=n/2? Can we do better than ®(n log n)
algorithm?

Medians and Order Statistics

To select the i smallest element of S={a,, a,,..., a.}

e Can we use PARTITION?

*if we are very lucky, we will get it in the first try!
eotherwise we should have a smaller set to recurse on.

* No guarantee of being lucky!
How can we guarantee a significantly smaller set?

The algorithm is the most complicated divide-and-
conquer algorithm in this course!

Order Statistics

Divide n elements into | n/5 | groups of 5 elements.
Find the median of each group.

Use SELECT recursively to find the median x of the
above [n/5 | medians.

Partition using x as pivot, and find position k of x.
If i=k return
else recurse on the appropriate subarray.

What kind of split does this produce?

The Way to Select x

At least (3n/10)-6 elements <x Divide elements into | 7/5 | groups

of 5 elements each.
Find the median of each group
Find the median of the medians

At least (3n/10)-6 elements >x

Figure 9.1 Analysis of the algorithm SELECT. The n elements are represented by small circles,
and each group occupies a column. The medians of the groups are whitened, and the median-of-
medians x is labeled. (When finding the median of an even number of elements, we use the lower
median.) Arrows are drawn from larger elements to smaller, from which it can be seen that 3 out
of every full group of 5 elements to the right of x are greater than x, and 3 out of every group
of 5 elements to the left of x are less than x. The elements greater than x are shown on a shaded
background.

Analysis of SELECT

* Steps 1,2,4 take O(n),
* Step 3takes T(n/5]).
* Let us see step 3:
- At least half of medians in step 2 are > x, thus at least
[1/2n/51 1-2 groups contribute 3 elements which are > x.
i.e, 3(1/2[n/51 1-2) > (3n/10)-6.

- Similarly, the number of elements < x is also at least
(3n/10)-6.

— Thus, |S,| I1s at most (7n/10)+6, similarly for |S,]|.
— Thus SELECT in step 5 is called recursively on at most
(7n/10)+6 elements.
* Recurrence is:
T(n)= { O(1) if n< 140
T(n/5)+T(7n/10+6)+O(n) if n >140

Solve recurrence by substitution

* Suppose T(n) <cn, for some c.
* T(n) <cln/5+ c(7n/10+6) + an
< cn/5+ ¢ + 7/10cn+6¢ + an
= 9/10cn+an+7c
=cn+(-cn/10+an+7c)
— Which is at most cn if -cn/10+an+7¢<0.
—1l.e., ¢ 210a(n/(n-70)) when n>70.

— S0 select n=140, and then ¢ >20a.
Note: n may not be 140, any integer >70 is OK.

Implication for Quicksort

* Worst case improves to O(n log n)
BUT...

Test your understanding

1. Problem 9.3-7: Describe an O(n) algorithm
that, given a set S of n distinct numbers and a
positive integer k <= n, determines the k
numbers In S that are closest to the median of
S.

2. Problem 9.3-8: Let X[1..n], Y[1..n] be two
sorted arrays. Give an O(lg n) algorithm to
find the median of all 2n elements in arrays
X,Y.

	Minimum and Maximum
	Minimum and Maximum – better algorithms
	Lower bounds for the MIN and MAX
	A proof?
	Is the previous proof correct?
	Slide 6
	Lower bounds for the MIN and MAX - contd
	Slide 8
	Lower bounds for the MIN and MAX – contd.
	Next: Linear sorting
	Non-Comparison Sort – Bucket Sort
	Example of BUCKET-SORT
	Bucket Sort - generalizations
	Non-Comparison Sort – Counting Sort
	Counting Sort - pseudocode
	Counting Sort - example
	Counting Sort - analysis
	Stable sort
	Radix sort
	Radix sort - example
	Next: Medians and Order Statistics (Ch. 9)
	Medians and Order Statistics
	Order Statistics
	The Way to Select x
	Analysis of SELECT
	Solve recurrence by substitution
	Implication for Quicksort
	Test your understanding

