
Comparison-based algorithms

Finished looking at comparison-based sorts.
Crucial observation: All the sorts work for any set of

elements – numbers, records, objects,……
Only require a comparator for two elements.

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const
void *));

DESCRIPTION: The qsort() function sorts an array with nmemb elements of size
size. The base argument points to the start of the array.

 The contents of the array are sorted in ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

Comparison-based algorithms

Finished looking at comparison-based sorts.
Crucial observation: All the sorts work for any set of

elements – numbers, records, objects,……
Only require a comparator for two elements.

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int(*compar)(const void *, const
void *));

DESCRIPTION: The qsort() function sorts an array with nmemb elements of size
size. The base argument points to the start of the array.

 The contents of the array are sorted in ascending order according to a
comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

Comparison-based algorithms

• The algorithm only uses the results of comparisons,
not values of elements (*).

• Very general – does not assume much about what
type of data is being sorted.

• However, other kinds of algorithms are possible!
• In this model, it is reasonable to count #comparisons.
• Note that the #comparisons is a lower bound on the

running time of an algorithm.

(*) If values are used, lower bounds proved in this
model are not lower bounds on the running time.

Lower bound for a simpler problem

Let’s start with a simple problem.

Minimum of n numbers

Minimum (A)

1. min = A[1]

2. for i = 2 to length[A]

3. do if min >= A[i]

4. then min = A[i]

5. return min

Can we do this with
fewer comparisons?

We have seen very different
algorithms for this problem. How
can we show that we cannot do
better by being smarter?

Lower bounds for the minimum

Claim: Any comparison-based algorithm for finding the
minimum of n keys must use at least n-1 comparisons.

Proof: If x,y are compared and x > y, call x the winner.

 Any key that is not the minimum must have won at least
one comparison. WHY?

 Each comparison produces exactly one winner and at
most one NEW winner.

at least n-1 comparisons have to be made.

Points to note

Crucial observations: We proved a claim about ANY
algorithm that only uses comparisons to find the
minimum. Specifically, we made no assumptions about

1. Nature of algorithm.

2. Order or number of comparisons.

3. Optimality of algorithm

4. Whether the algorithm is reasonable – e.g. it could be a
very wasteful algorithm, repeating the same
comparisons.

On lower bound techniques
Unfortunate facts:

Lower bounds are usually hard to prove.

Virtually no known general techniques – must try ad hoc
methods for each problem.

Lower bounds for comparison-based sorting

• Trivial: (n) – every element must take part in a
comparison.

• Best possible result – (n log n) comparisons, since
we already know several O(n log n) sorting algorithms.

• Proof is non-trivial: how do we reason about all possible
comparison-based sorting algorithms?

The Decision Tree Model

• Assumptions:
– All numbers are distinct (so no use for ai = aj)

– All comparisons have form ai aj (since ai aj, ai
aj, ai < aj, ai > aj are equivalent).

• Decision tree model
– Full binary tree
– Ignore control, movement, and all other operations,

just use comparisons.

– suppose three elements < a1, a2, a3> with instance
<6,8,5>.

The Decision Tree Model - contd

• Consider Insertion sort again

for j=2 to length(A)
 do key=A[j]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i]
 i--
 A[i+1]:=key

Example: insertion sort (n=3)

A[2]: A[3] A[1]: A[3]

A[1]: A[2]

A[1]: A[3] A[2]: A[3]

>

>

>>

>

A[1]A[2]A[3]

A[1]A[3]A[2] A[3]A[1]A[2] A[2]A[3]A[1]

A[2]A[1]A[3]

A[3]A[2]A[1]

The Decision Tree Model

2:3

1:2

2:3

1:3

1:3<1,2,3>

<1,3,2> <3,1,2>

<2,1,3>

<2,3,1> <3,2,1>

>

>

>

>

>

Internal node i:j indicates comparison between ai and aj.
Leaf node <(1), (2), (3)> indicates ordering a(1) a(2) a(3).
Path of bold lines indicates sorting path for <6,8,5>.
There are total 3!=6 possible permutations (paths).

Summary

 Only consider comparisons
 Each internal node = 1 comparison
 Start at root, make the first comparison

 - if the outcome is take the LEFT branch

 - if the outcome is > - take the RIGHT branch
 Repeat at each internal node

 Each LEAF represents ONE correct ordering

Intuitive idea

Subset S1 of S

s.t. x[i] x[j]
Subset S2 of S

s.t. x[i] > x[j]

 S
 x[i] : x[j]

 >

S is a set of permutations

Lower bound for the worst case

• Claim: The decision tree must have at least n! leaves.
WHY?

• worst case number of comparisons= the height of the
decision tree.

• Claim: Any comparison sort in the worst case needs (n
log n) comparisons.

• Suppose height of a decision tree is h, number of paths
(i,e,, permutations) is n!.

• Since a binary tree of height h has at most 2h leaves,

 n! 2h , so h lg (n!) (n lg n)

Lower bounds: check your understanding

Can you prove that any algorithm that searches for an

element in a sorted array of size n must have running time
(lg n) ?

	Comparison-based algorithms
	Slide 43
	Slide 44
	Lower bound for a simpler problem
	Lower bounds for the minimum
	Points to note
	On lower bound techniques
	Lower bounds for comparison-based sorting
	The Decision Tree Model
	Slide 51
	Example: insertion sort (n=3)
	Slide 53
	Summary
	Intuitive idea
	Lower bound for the worst case
	Lower bounds: check your understanding

