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A design paradigm

Divide and conquer: 

(When) does decomposing a problem into

smaller parts help? 
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INPUT: Two pairs of integers, (a,b), (c,d) representing 
complex numbers, a+ib, c+id, respectively.

OUTPUT: The pair [(ac-bd),(ad+bc)] representing the 
product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions.
     Suppose a multiplication costs $1 and an addition cost 

a penny. The naïve algorithm costs $4.02.

Q: Can you do better?

Multiplying complex numbers
(from Jeff Edmonds’ slides)
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• m1 = ac

•  m2 = bd

•  A1 = m1 – m2 = ac-bd

•  m3 = (a+b)(c+d) = ac + ad + bc + bd

•  A2 = m3 – m1 – m2 = ad+bc

• Saves 1 multiplication! Uses more additions. The 
cost now is $3.03.

• This is good (saves 25% multiplications), but it leads to 
more dramatic asymptotic improvement elsewhere! 
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

Gauss’ idea



EECS 310109/09/17 115

How to multiply two n-bit numbers.

X
* * * * * * * * 
* * * * * * * * 

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * *
  * * * * * * * *

  * * * * * * * * * * * * * * * *

n2

Elementary
School algorithm
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How to multiply two n-bit numbers - contd.

X
* * * * * * * * 
* * * * * * * * 

  * * * * * * * * * * * * * * * *

Elementary
School algorithm

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.
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Divide and Conquer

Intuition:
•DIVIDE  my instance to the problem into smaller 
instances to the same problem.
•Recursively solve them.

•GLUE the answers together so as to obtain the answer 
to your larger instance.  

•Sometimes the last step may be trivial.
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Multiplication of two n-bit numbers

• X = 

• Y = 
• X = a 2n/2 + b     Y = c 2n/2 + d 

• XY = ac 2n + (ad+bc) 2n/2 + bd 

a b

c d

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN 

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)
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Time complexity of MULT

• T(n) = time taken by MULT on two n-bit numbers

• What is T(n)? Is it θ(n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k

• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a θ() expression for T(n)?

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN 

   MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)
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Time complexity of MULT

Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n  

Technique 1: Guess and verify

T(n) = 2n2 –n

Holds for n=1

T(n) = 4 (2(n/2)2 –n/2 + n)

        = 2n2 –n
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Time complexity of MULT

• T(1) = 1 & T(n) = 4 T(n/2) + n  

Technique 2:  Expand recursion 
T(n) = 4 T(n/2) + n
        = 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
        = 42(4T(n/8) + n/4) + n + 2n 
        = 43T(n/8) + n + 2n + 4n
        = ………
        = 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n    

GUESS
        = n2 + n (1 + 2 + 4 + … + 2k-1)
        = n2 + n (2k-1) 
        = 2 n2  - n   [NOT FASTER THAN BEFORE]
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Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN  e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f
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Time complexity of Gaussified MULT

• T(1) = 1 & T(n) = 3 T(n/2) + n  

Technique 2:  Expand recursion 

T(n) = 3 T(n/2) + n

        = 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n

        = 32(3T(n/8) + n/4) + n + 3/2n 

        = 33T(n/8) + n + 3/2n + (3/2)2n

        = ………

        = 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n 
 

        = 3 log
2

 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)

        = n log
2

 3 + 2n ((3/2)k-1) 

        = n log
2

 3 + 2n (n log
2

 3 /n -1) 

        = 3n log
2

 3 - 2n

Not just 25% savings!

θ(n2) vs θ(n1.58..)
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Multiplication Algorithms

Kindergarten ?
n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

Show

3*4=3+3+3+3
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1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text. 

2. Next, Strassen’s algorithm for matrix multiplication
3. Later: more design and conquer algorithms: MergeSort. 

Solving recurrences and the Master Theorem.

Next…
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Matrix multiplication

• Fundamental operation in Linear Algebra
• Used for numerical differentiation, integration, 

optimization etc 
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Naïve matrix multiplication

SimpleMatrixMultiply (A,B)
      1. n   A.rows
      2. C  CreateMatrix(n,n)
      3. for i  1 to n
      4.   for j  1 to n
      5.       C[i,j]  0
      6.       for k  1 to n
      7.             C[i,j]  C[i,j] + A[i,k]*B[k,j]
      8. return C

• Argue that the running time is θ(n3) 
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Faster Algorithm?

• Idea: Similar to multiplication in N, C
• Divide and conquer approach provides 

unexpected improvements 
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First attempt and Divide & Conquer 
Divide A,B into 4 n/2 x n/2 matrices
• C11 = A11 B11 + A12B21

• C12 = A11 B12 + A12B22

• C21 = A21 B11 + A22B21

• C22 = A21 B12 + A22B22

Simple Recursive implementation. Running time is 
given by the following recurrence.

• T(1) = C, and for n>1
• T(n) = 8T(n/2) + θ(n2) 

• θ(n3) time-complexity
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Strassen’s algorithm

Avoid one multiplication (details on page 80)

(but uses more additions)

Recurrence:
• T(1) = C, and for n>1
• T(n) = 7T(n/2) + θ(n2)

• How can we solve this?
• Will see that T(n) = θ(nlg 7), lg 7  =2.8073…. 
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The maximum-subarray problem

• Given an array of integers, find a contiguous 
subarray with the maximum sum.

• Very naïve algorithm:

• Brute force algorithm:

• At best, θ(n2) time complexity
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Can we do divide and conquer?

• Want to use answers from left and right half 
subarrays.

• Problem: The answer may not lie in either!

• Key question: What information do we need 
from (smaller) subproblems to solve the big 
problem?

• Related question: how do we get this 
information?
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A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
• T(1) = C, and for n>1
• T(n) = 2T(n/2) + θ(n)

• T(n) = θ(n log n)
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More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs 
to be done if S has zero or one elements), remove all 
the elements from S and put them into two 
sequences, S1 and S2 , each containing about half of 

the elements of S. (i.e. S1 contains the first 
n/2elements and S2 contains the remaining 

n/2elements).

• Conquer: Sort sequences S1 and S2 using Merge 
Sort.

• Combine: Put back the elements into S by merging 
the sorted sequences S1 and S2 into one sorted 
sequence
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Merge Sort: Algorithm 

Merge-Sort(A, p, r)
   if p < r then
      q(p+r)/2
      Merge-Sort(A, p, q)
      Merge-Sort(A, q+1, r)
      Merge(A, p, q, r)

Merge-Sort(A, p, r)
   if p < r then
      q(p+r)/2
      Merge-Sort(A, p, q)
      Merge-Sort(A, q+1, r)
      Merge(A, p, q, r)

Merge(A, p, q, r)
   Take the smallest of the two topmost elements of 
sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 

Merge(A, p, q, r)
   Take the smallest of the two topmost elements of 
sequences A[p..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[p..r]. 
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Merge Sort: example
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Merge Sort: summary

• To sort n numbers
– if n=1 done!

– recursively sort 2 lists of 
numbers n/2 and n/2 
elements

– merge 2 sorted lists in (n) 
time

• Strategy
– break problem into similar 

(smaller) subproblems
– recursively solve 

subproblems

– combine solutions to answer
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Recurrences

• Running times of algorithms with Recursive calls 
can be described using recurrences

• A recurrence is an equation or inequality that 
describes a function in terms of its value on smaller 
inputs

Example: Merge Sort

(1)   if 1
( )

2 ( / 2) ( )   if 1

n
T n

T n n n

 
   

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1

n
T n

T n n


    
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Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and 

noticing patterns

• Substitution method
– guessing the solutions

– verifying the solution by the mathematical 
induction

• Recursion-trees
• Master method

– templates for different classes of recurrences
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Repeated Substitution Method

• Let’s find the running time of merge sort (let’s 
assume that n=2b, for some b).

1   if 1
( )

2 ( / 2)   if 1

n
T n

T n n n


   

( )
( )( )

2

2

3

lg

( ) 2 / 2     substitute

2 2 / 4 / 2    expand

2 ( / 4) 2    substitute

2 (2 ( /8) / 4) 2    expand

             2 ( /8) 3     observe the pattern

( ) 2 ( / 2 )

2 ( / ) lg lg

i i

n

T n T n n

T n n n

T n n

T n n n

T n n

T n T n in

T n n n n n n n

= +
= + +

= +
= + +

= +

= +
= + = +
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Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute 
– Expand
– …
– Observe a pattern and write how your expression 

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to 

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into 

your expression
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Substitution method

3 3

3

3

3

3

Solve ( ) 4 ( / 2)

1) Guess that ( ) ( ), i.e., that  of the form 

2) Assume ( )  for / 2 and

3) Prove ( )  by induction

( ) 4 ( / 2)  (recurrence)

4c(n/2)  (ind. hypoth.)

 (si
2

T n T n n

T n O n T cn

T k ck k n

T n cn

T n T n n

n

c
n n

 



 


 
 

 

3 3

3

3

0 0

mplify)

 (rearrange)
2

 if 2 and 1 (satisfy)

Thus ( ) ( )!

Subtlety: Must choose  big enough to handle

( ) (1) for  for some 

c
cn n n

cn c n

T n O n

c

T n n n n

    
 

  



  
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Substitution method

• Achieving tighter bounds

2

2

2

2

2

Try to show ( ) ( )

Assume ( )

( ) 4 ( / 2)

4 ( / 2)

 for no choice of 0.

T n O n

T k ck

T n T n n

c n n

cn n

cn c

=

£
= +
£ +
= +
£ >
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Substitution method

The problem: We could not rewrite the equality

as:

in order to show the inequality we wanted
• Sometimes to prove inductive step, try to 

strengthen your hypothesis

– T(n) ≤ (answer you want) - (something > 0)

2( ) + (something positive)T n cn

2( )T n cn£
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Substitution method

• Corrected proof: the idea is to strengthen the 
inductive hypothesis by subtracting lower-order 
terms!

2
1 2

2
1 2
2

1 2
2

1 2 2
2

1 2 2

Assume ( )  for 

( ) 4 ( / 2)

4( ( / 2) ( / 2))

2

( )

 if 1

T k c k c k k n

T n T n n

c n c n n

c n c n n

c n c n c n n

c n c n c

£ - <
= +
£ - +
= - +
= - - -
£ - ³
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Recursion Tree

• A recursion tree is a convenient way to visualize what 
happens when a recurrence is iterated

• Construction of a recursion tree

2( ) ( / 4) ( / 2)T n T n T n n= + +
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Recursion Tree
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Recursion Tree

( ) ( /3) (2 /3)T n T n T n n= + +
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Master Method
• The idea is to solve a class of recurrences that have 

the form

• a  1 and b > 1, and f  is asymptotically positive!

• Abstractly speaking, T(n) is the runtime for an 
algorithm and we know that
– a subproblems of size n/b are solved recursively, 

each in time T(n/b)
– f(n) is the cost of dividing the problem and 

combining the results. In merge-sort 

( ) ( / ) ( )T n aT n b f n 

( ) 2 ( / 2) ( )T n T n n= + Q
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Master method

Split problem into a parts at logbn 
levels. There are      leaves

log logb bn aa n=
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Master method

• Number of leaves:
• Iterating the recurrence, expanding the tree yields

– The first term is a division/recombination cost (totaled across 
all levels of the tree)

– The second term is the cost of doing all         subproblems of 
size 1 (total of all work pushed to leaves)

log logb bn aa n=

2 2

2 2

log 1 log 1 log

log 1
log

0

( ) ( ) ( / )

( ) ( / ) ( / )

( ) ( / ) ( / ) ...

( / ) (1)

Thus,

( ) ( / ) ( )

b b b

b

b

n n n

n
aj j

j

T n f n aT n b

f n af n b a T n b

f n af n b a T n b

a f n b a T

T n a f n b n

 





 
  
   

 

 

logb an
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Master method intuition

• Three common cases:
– Running time dominated by cost at leaves
– Running time evenly distributed throughout the 

tree

– Running time dominated by cost at root

• Consequently, to solve the recurrence, we 
need only to characterize the dominant term

• In each case compare         with( )f n log( )b aO n
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Master method Case 1

•                          for some constant
– f(n) grows polynomially (by factor     ) 

slower than  

• The work at the leaf level dominates
– Summation of recursion-tree levels
– Cost of all the leaves
– Thus, the overall cost

log( ) ( )b af n O n 

logb an

0 

n

log( )b aO n
log( )b an

log( )b an
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Master method Case 2

•  
–        and           are asymptotically the same

• The work is distributed equally 
throughout the tree
– (level cost) (number of levels) 

log( ) ( lg )b af n n n 
( )f n

log( ) ( lg )b aT n n n 

logb an
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Master method Case 3

•                         for some constant
– Inverse of Case 1

– f(n) grows polynomially faster than  

– Also need a regularity condition 

• The work at the root dominates

log( ) ( )b af n n  

logb an

0 01 and 0 such that ( / ) ( )   c n af n b cf n n n     

( ) ( ( ))T n f n 

0 
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Master Theorem Summarized
• Given a recurrence of the form 

• The master method cannot solve every recurrence 
of this form; there is a gap between cases 1 and 2, 
as well as cases 2 and 3

( ) ( / ) ( )T n aT n b f n 
 

 
 

 
 
 

log

log

log

log

log
0

1. ( )

( )

2. ( )  

( ) lg

3. ( )  and ( / ) ( ),  for some 1,

( ) ( )

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n







  

 

  

    

  
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Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine 
• Compare f(n) and             asymptotically 

• Determine appropriate MT case, and apply

• Example merge sort

logb an

   

2log log 2

log

( ) 2 ( / 2) ( )

2,  2;  ( )

Also ( ) ( )

Case 2 ( ) lg lg:  

b

b

a

a

T n T n n

a b n n n n

f n n

T n n n n n

 

     
 

    

logb an
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Examples

 

2

3

log 1

log 9

2

( ) ( / 2) 1

1, 2;  1

also ( ) 1, ( ) (1)

( ) (lg )

(

Case 2:  

Cas

) 9 ( / 3)

9, 3;  

( ) ,  ( ) ( ) with 1

( )e 1:  

T n T n

a b n

f n f n

T n n

T n T n n

a b

f n n f n O n

T n n



 

  
  

  

 
 

   

  

Binary-search(A, p, r, s):
   q(p+r)/2 
   if A[q]=s then return q
   else if A[q]>s then 
        Binary-search(A, p, q-1, s)
   else Binary-search(A, q+1, r, s) 
     

Binary-search(A, p, r, s):
   q(p+r)/2 
   if A[q]=s then return q
   else if A[q]>s then 
        Binary-search(A, p, q-1, s)
   else Binary-search(A, q+1, r, s) 
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Examples

4

4

2

log 3 0.793

log 3

log 2 1

( ) 3 ( / 4) lg

3, 4;  

( ) lg ,  ( ) ( ) with 0.2

Regularity condition

( / ) 3( / 4) l

Case 

g( / 4) (3 / 4) lg ( ) for 3 / 4

( ) ( lg )

( ) 2 ( / 2) lg

2, 2;  

3:

T n T n n n

a b n n

f n n n f n n

af n b n n n n cf n c

T n n n

T n T n n n

a b n n

f



 

  

    


   
 

 

  
1

1

( ) lg ,  ( ) ( ) with ?

also l

neither Case 3 nor Case 2!

g / lg

n n n f n n

n n n n

   



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Examples

 

2

3

log 4 2

3 2

3

3 3

3 3

( ) 4 ( / 2)

4, 2;  

 ( ) ;  ( ) ( )

( )

Checking the regularity condition

4 ( /

Cas

2) ( )

4 / 8

/ 2

3/ 4

e 3: 

1

T n T n n

a b n n

f n n f n n

T n n

f n cf n

n cn

n cn

c

 

  

  

  






 
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1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 4 of the text. 

2. Next,  more sorting algorithms.

Next…
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