
EECS 310109/09/17 112

A design paradigm

Divide and conquer:

(When) does decomposing a problem into

smaller parts help?

EECS 310109/09/17 113

INPUT: Two pairs of integers, (a,b), (c,d) representing
complex numbers, a+ib, c+id, respectively.

OUTPUT: The pair [(ac-bd),(ad+bc)] representing the
product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions.
 Suppose a multiplication costs $1 and an addition cost

a penny. The naïve algorithm costs $4.02.

Q: Can you do better?

Multiplying complex numbers
(from Jeff Edmonds’ slides)

EECS 310109/09/17 114

• m1 = ac

• m2 = bd

• A1 = m1 – m2 = ac-bd

• m3 = (a+b)(c+d) = ac + ad + bc + bd

• A2 = m3 – m1 – m2 = ad+bc

• Saves 1 multiplication! Uses more additions. The
cost now is $3.03.

• This is good (saves 25% multiplications), but it leads to
more dramatic asymptotic improvement elsewhere!
(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?

Gauss’ idea

EECS 310109/09/17 115

How to multiply two n-bit numbers.

X
* * * * * * * *
* * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * *
 * * * * * * * *

 * * * * * * * * * * * * * * * *

n2

Elementary
School algorithm

EECS 310109/09/17 116

How to multiply two n-bit numbers - contd.

X
* * * * * * * *
* * * * * * * *

 * * * * * * * * * * * * * * * *

Elementary
School algorithm

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.

EECS 310109/09/17 117

Divide and Conquer

Intuition:
•DIVIDE my instance to the problem into smaller
instances to the same problem.
•Recursively solve them.

•GLUE the answers together so as to obtain the answer
to your larger instance.

•Sometimes the last step may be trivial.

EECS 310109/09/17 118

Multiplication of two n-bit numbers

• X =

• Y =
• X = a 2n/2 + b Y = c 2n/2 + d

• XY = ac 2n + (ad+bc) 2n/2 + bd

a b

c d

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

EECS 310109/09/17 119

Time complexity of MULT

• T(n) = time taken by MULT on two n-bit numbers

• What is T(n)? Is it θ(n2)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k

• T(n) = 4 T(n/2) + c1n + c2 for some constants c1 and c2

• How can we get a θ() expression for T(n)?

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 RETURN

 MULT(a,c) 2n + (MULT(a,d) + MULT(b,c)) 2n/2 + MULT(b,d)

EECS 310109/09/17 120

Time complexity of MULT

Make it concrete
• T(1) = 1
• T(n) = 4 T(n/2) + n

Technique 1: Guess and verify

T(n) = 2n2 –n

Holds for n=1

T(n) = 4 (2(n/2)2 –n/2 + n)

 = 2n2 –n

EECS 310109/09/17 121

Time complexity of MULT

• T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion
T(n) = 4 T(n/2) + n
 = 4 (4T(n/4) + n/2) + n = 42T(n/4) + n + 2n
 = 42(4T(n/8) + n/4) + n + 2n
 = 43T(n/8) + n + 2n + 4n
 = ………
 = 4kT(1) + n + 2n + 4n + … + 2k-1n where 2k= n

GUESS
 = n2 + n (1 + 2 + 4 + … + 2k-1)
 = n2 + n (2k-1)
 = 2 n2 - n [NOT FASTER THAN BEFORE]

EECS 310109/09/17 122

Gaussified MULT (Karatsuba 1962)

•T(n) = 3 T(n/2) + n
•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

MULT(X,Y):

 If |X| = |Y| = 1 then RETURN XY

 Break X into a;b and Y into c;d

 e = MULT(a,c) and f =MULT(b,d)

 RETURN e2n + (MULT(a+b, c+d) – e - f) 2n/2 + f

EECS 310109/09/17 123

Time complexity of Gaussified MULT

• T(1) = 1 & T(n) = 3 T(n/2) + n

Technique 2: Expand recursion

T(n) = 3 T(n/2) + n

 = 3 (3T(n/4) + n/2) + n = 32T(n/4) + n + 3/2n

 = 32(3T(n/8) + n/4) + n + 3/2n

 = 33T(n/8) + n + 3/2n + (3/2)2n

 = ………

 = 3kT(1) + n + 3/2n + (3/2)2n + … + (3/2)k-1n where 2k= n

 = 3 log
2

 n + n(1 + 3/2 + (3/2)2 + … + (3/2)k-1)

 = n log
2

 3 + 2n ((3/2)k-1)

 = n log
2

 3 + 2n (n log
2

 3 /n -1)

 = 3n log
2

 3 - 2n

Not just 25% savings!

θ(n2) vs θ(n1.58..)

EECS 310109/09/17 124

Multiplication Algorithms

Kindergarten ?
n2n

Grade School n2

Karatsuba n1.58…

Fastest Known n logn loglogn

Show

3*4=3+3+3+3

EECS 310109/09/17 125

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 2 of the text.

2. Next, Strassen’s algorithm for matrix multiplication
3. Later: more design and conquer algorithms: MergeSort.

Solving recurrences and the Master Theorem.

Next…

EECS 3101

Matrix multiplication

• Fundamental operation in Linear Algebra
• Used for numerical differentiation, integration,

optimization etc

EECS 3101

Naïve matrix multiplication

SimpleMatrixMultiply (A,B)
 1. n  A.rows
 2. C  CreateMatrix(n,n)
 3. for i  1 to n
 4. for j  1 to n
 5. C[i,j]  0
 6. for k  1 to n
 7. C[i,j]  C[i,j] + A[i,k]*B[k,j]
 8. return C

• Argue that the running time is θ(n3)

EECS 3101

Faster Algorithm?

• Idea: Similar to multiplication in N, C
• Divide and conquer approach provides

unexpected improvements

EECS 3101

First attempt and Divide & Conquer
Divide A,B into 4 n/2 x n/2 matrices
• C11 = A11 B11 + A12B21

• C12 = A11 B12 + A12B22

• C21 = A21 B11 + A22B21

• C22 = A21 B12 + A22B22

Simple Recursive implementation. Running time is
given by the following recurrence.

• T(1) = C, and for n>1
• T(n) = 8T(n/2) + θ(n2)

• θ(n3) time-complexity

EECS 3101

Strassen’s algorithm

Avoid one multiplication (details on page 80)

(but uses more additions)

Recurrence:
• T(1) = C, and for n>1
• T(n) = 7T(n/2) + θ(n2)

• How can we solve this?
• Will see that T(n) = θ(nlg 7), lg 7 =2.8073….

EECS 3101

The maximum-subarray problem

• Given an array of integers, find a contiguous
subarray with the maximum sum.

• Very naïve algorithm:

• Brute force algorithm:

• At best, θ(n2) time complexity

EECS 3101

Can we do divide and conquer?

• Want to use answers from left and right half
subarrays.

• Problem: The answer may not lie in either!

• Key question: What information do we need
from (smaller) subproblems to solve the big
problem?

• Related question: how do we get this
information?

EECS 3101

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
• T(1) = C, and for n>1
• T(n) = 2T(n/2) + θ(n)

• T(n) = θ(n log n)

EECS 3101

More divide and conquer : Merge Sort

• Divide: If S has at least two elements (nothing needs
to be done if S has zero or one elements), remove all
the elements from S and put them into two
sequences, S1 and S2 , each containing about half of

the elements of S. (i.e. S1 contains the first
n/2elements and S2 contains the remaining

n/2elements).

• Conquer: Sort sequences S1 and S2 using Merge
Sort.

• Combine: Put back the elements into S by merging
the sorted sequences S1 and S2 into one sorted
sequence

EECS 3101

Merge Sort: Algorithm

Merge-Sort(A, p, r)
 if p < r then
 q(p+r)/2
 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1, r)
 Merge(A, p, q, r)

Merge-Sort(A, p, r)
 if p < r then
 q(p+r)/2
 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1, r)
 Merge(A, p, q, r)

Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
sequences A[p..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[p..r].

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: example

EECS 3101

Merge Sort: summary

• To sort n numbers
– if n=1 done!

– recursively sort 2 lists of
numbers n/2 and n/2
elements

– merge 2 sorted lists in (n)
time

• Strategy
– break problem into similar

(smaller) subproblems
– recursively solve

subproblems

– combine solutions to answer

EECS 3101

Recurrences

• Running times of algorithms with Recursive calls
can be described using recurrences

• A recurrence is an equation or inequality that
describes a function in terms of its value on smaller
inputs

Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
   

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n


    

EECS 3101

Solving recurrences

• Repeated substitution method
– Expanding the recurrence by substitution and

noticing patterns

• Substitution method
– guessing the solutions

– verifying the solution by the mathematical
induction

• Recursion-trees
• Master method

– templates for different classes of recurrences

EECS 3101

Repeated Substitution Method

• Let’s find the running time of merge sort (let’s
assume that n=2b, for some b).

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n


   

()
()()

2

2

3

lg

() 2 / 2 substitute

2 2 / 4 / 2 expand

2 (/ 4) 2 substitute

2 (2 (/8) / 4) 2 expand

 2 (/8) 3 observe the pattern

() 2 (/ 2)

2 (/) lg lg

i i

n

T n T n n

T n n n

T n n

T n n n

T n n

T n T n in

T n n n n n n n

= +
= + +

= +
= + +

= +

= +
= + = +

EECS 3101

Repeated Substitution Method

• The procedure is straightforward:
– Substitute
– Expand
– Substitute
– Expand
– …
– Observe a pattern and write how your expression

looks after the i-th substitution
– Find out what the value of i (e.g., lg n) should be to

get the base case of the recurrence (say T(1))
– Insert the value of T(1) and the expression of i into

your expression

EECS 3101

Substitution method

3 3

3

3

3

3

Solve () 4 (/ 2)

1) Guess that () (), i.e., that of the form

2) Assume () for / 2 and

3) Prove () by induction

() 4 (/ 2) (recurrence)

4c(n/2) (ind. hypoth.)

 (si
2

T n T n n

T n O n T cn

T k ck k n

T n cn

T n T n n

n

c
n n

 



 


 
 

 

3 3

3

3

0 0

mplify)

 (rearrange)
2

 if 2 and 1 (satisfy)

Thus () ()!

Subtlety: Must choose big enough to handle

() (1) for for some

c
cn n n

cn c n

T n O n

c

T n n n n

    
 

  



  

EECS 3101

Substitution method

• Achieving tighter bounds

2

2

2

2

2

Try to show () ()

Assume ()

() 4 (/ 2)

4 (/ 2)

 for no choice of 0.

T n O n

T k ck

T n T n n

c n n

cn n

cn c

=

£
= +
£ +
= +
£ >

EECS 3101

Substitution method

The problem: We could not rewrite the equality

as:

in order to show the inequality we wanted
• Sometimes to prove inductive step, try to

strengthen your hypothesis

– T(n) ≤ (answer you want) - (something > 0)

2() + (something positive)T n cn

2()T n cn£

EECS 3101

Substitution method

• Corrected proof: the idea is to strengthen the
inductive hypothesis by subtracting lower-order
terms!

2
1 2

2
1 2
2

1 2
2

1 2 2
2

1 2 2

Assume () for

() 4 (/ 2)

4((/ 2) (/ 2))

2

()

 if 1

T k c k c k k n

T n T n n

c n c n n

c n c n n

c n c n c n n

c n c n c

£ - <
= +
£ - +
= - +
= - - -
£ - ³

EECS 3101

Recursion Tree

• A recursion tree is a convenient way to visualize what
happens when a recurrence is iterated

• Construction of a recursion tree

2() (/ 4) (/ 2)T n T n T n n= + +

EECS 3101

Recursion Tree

EECS 3101

Recursion Tree

() (/3) (2 /3)T n T n T n n= + +

EECS 3101

Master Method
• The idea is to solve a class of recurrences that have

the form

• a  1 and b > 1, and f is asymptotically positive!

• Abstractly speaking, T(n) is the runtime for an
algorithm and we know that
– a subproblems of size n/b are solved recursively,

each in time T(n/b)
– f(n) is the cost of dividing the problem and

combining the results. In merge-sort

() (/) ()T n aT n b f n 

() 2 (/ 2) ()T n T n n= + Q

EECS 3101

Master method

Split problem into a parts at logbn
levels. There are leaves

log logb bn aa n=

EECS 3101

Master method

• Number of leaves:
• Iterating the recurrence, expanding the tree yields

– The first term is a division/recombination cost (totaled across
all levels of the tree)

– The second term is the cost of doing all subproblems of
size 1 (total of all work pushed to leaves)

log logb bn aa n=

2 2

2 2

log 1 log 1 log

log 1
log

0

() () (/)

() (/) (/)

() (/) (/) ...

(/) (1)

Thus,

() (/) ()

b b b

b

b

n n n

n
aj j

j

T n f n aT n b

f n af n b a T n b

f n af n b a T n b

a f n b a T

T n a f n b n

 





 
  
   

 

 

logb an

EECS 3101

Master method intuition

• Three common cases:
– Running time dominated by cost at leaves
– Running time evenly distributed throughout the

tree

– Running time dominated by cost at root

• Consequently, to solve the recurrence, we
need only to characterize the dominant term

• In each case compare with()f n log()b aO n

EECS 3101

Master method Case 1

• for some constant
– f(n) grows polynomially (by factor)

slower than

• The work at the leaf level dominates
– Summation of recursion-tree levels
– Cost of all the leaves
– Thus, the overall cost

log() ()b af n O n 

logb an

0 

n

log()b aO n
log()b an

log()b an

EECS 3101

Master method Case 2

•
– and are asymptotically the same

• The work is distributed equally
throughout the tree
– (level cost) (number of levels)

log() (lg)b af n n n 
()f n

log() (lg)b aT n n n 

logb an

EECS 3101

Master method Case 3

• for some constant
– Inverse of Case 1

– f(n) grows polynomially faster than

– Also need a regularity condition

• The work at the root dominates

log() ()b af n n  

logb an

0 01 and 0 such that (/) () c n af n b cf n n n     

() (())T n f n 

0 

EECS 3101

Master Theorem Summarized
• Given a recurrence of the form

• The master method cannot solve every recurrence
of this form; there is a gap between cases 1 and 2,
as well as cases 2 and 3

() (/) ()T n aT n b f n 
 

 
 

 
 
 

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n







  

 

  

    

  

EECS 3101

Using the Master Theorem

• Extract a, b, and f(n) from a given recurrence
• Determine
• Compare f(n) and asymptotically

• Determine appropriate MT case, and apply

• Example merge sort

logb an

   

2log log 2

log

() 2 (/ 2) ()

2, 2; ()

Also () ()

Case 2 () lg lg:

b

b

a

a

T n T n n

a b n n n n

f n n

T n n n n n

 

     
 

    

logb an

EECS 3101

Examples

 

2

3

log 1

log 9

2

() (/ 2) 1

1, 2; 1

also () 1, () (1)

() (lg)

(

Case 2:

Cas

) 9 (/ 3)

9, 3;

() , () () with 1

()e 1:

T n T n

a b n

f n f n

T n n

T n T n n

a b

f n n f n O n

T n n



 

  
  

  

 
 

   

  

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
 q(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
 Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)

EECS 3101

Examples

4

4

2

log 3 0.793

log 3

log 2 1

() 3 (/ 4) lg

3, 4;

() lg , () () with 0.2

Regularity condition

(/) 3(/ 4) l

Case

g(/ 4) (3 / 4) lg () for 3 / 4

() (lg)

() 2 (/ 2) lg

2, 2;

3:

T n T n n n

a b n n

f n n n f n n

af n b n n n n cf n c

T n n n

T n T n n n

a b n n

f



 

  

    


   
 

 

  
1

1

() lg , () () with ?

also l

neither Case 3 nor Case 2!

g / lg

n n n f n n

n n n n

   




EECS 3101

Examples

 

2

3

log 4 2

3 2

3

3 3

3 3

() 4 (/ 2)

4, 2;

 () ; () ()

()

Checking the regularity condition

4 (/

Cas

2) ()

4 / 8

/ 2

3/ 4

e 3:

1

T n T n n

a b n n

f n n f n n

T n n

f n cf n

n cn

n cn

c

 

  

  

  






 

EECS 3101

1. Covered basics of a simple design technique (Divide-
and-conquer) – Ch. 4 of the text.

2. Next, more sorting algorithms.

Next…

	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182

