A design paradigm

Divide and conquer:

(When) does decomposing a problem into smaller parts help?

Multiplying complex numbers (from Jeff Edmonds' slides)

INPUT: Two pairs of integers, (a,b), (c,d) representing complex numbers, a+ib, c+id, respectively.
 OUTPUT: The pair [(ac-bd),(ad+bc)] representing the product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions. Suppose a multiplication costs \$1 and an addition cost a penny. The naïve algorithm costs \$4.02.

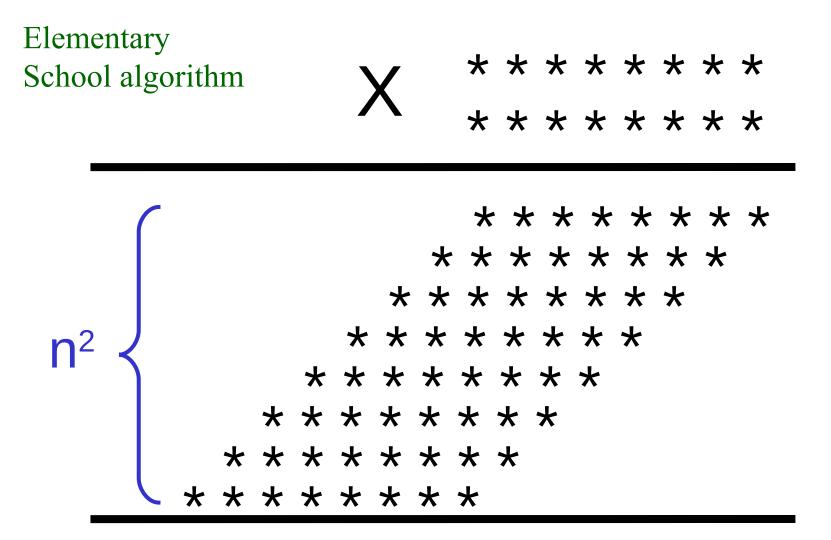
Q: Can you do better?

Gauss' idea

- $m_1 = ac$
- $m_2 = bd$
- $A_1 = m_1 m_2 = ac-bd$
- $m_3 = (a+b)(c+d) = ac + ad + bc + bd$
- $A_2 = m_3 m_1 m_2 = ad+bc$
- Saves 1 multiplication! Uses more additions. The cost now is \$3.03.
- This is good (saves 25% multiplications), but it leads to more dramatic asymptotic improvement elsewhere! (aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers? EECS 3101

How to multiply two n-bit numbers.



How to multiply two n-bit numbers - contd.

Elementary School algorithm

Х

* * * * * * * * *

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.

Divide and Conquer

Intuition:

•**DIVIDE** my instance to the problem into smaller instances to the same problem.

- •Recursively solve them.
- •GLUE the answers together so as to obtain the answer to your larger instance.
- •Sometimes the last step may be trivial.

Multiplication of two n-bit numbers

• $X = a 2^{n/2} + b$ $Y = c 2^{n/2} + d$

MULT(X,Y): • XY = ac
$$2^{n}$$
 + (ad+bc) $2^{n/2}$ + bd

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2ⁿ + (MULT(a,d) + MULT(b,c)) 2^{n/2} + MULT(b,d) ^{09/09/17} EECS 3101

Time complexity of MULT

- T(n) = time taken by MULT on two n-bit numbers
- What is T(n)? Is it $\theta(n^2)$?
- Hard to compute directly
- Easier to express as a <u>recurrence relation</u>!
- T(1) = k for some constant k
- $T(n) = 4 T(n/2) + c_1 n + c_2$ for some constants c_1 and c_2
- How can we get a $\theta()$ expression for T(n)?

MULT(X,Y):

```
If |X| = |Y| = 1 then RETURN XY
```

Break X into a;b and Y into c;d

RETURN

MULT(a,c) 2ⁿ + (MULT(a,d) + MULT(b,c)) 2^{n/2} + MULT(b,d) ^{09/09/17} EECS 3101

Time complexity of MULT

Make it concrete

- T(1) = 1
- T(n) = 4 T(n/2) + n

<u>Technique 1:</u> Guess and verify $T(n) = 2n^2 - n$ Holds for n=1 $T(n) = 4 (2(n/2)^2 - n/2 + n)$ $= 2n^2 - n$

Time complexity of MULT

• T(1) = 1 & T(n) = 4 T(n/2) + n

Technique 2: Expand recursion

$$T(n) = 4 T(n/2) + n$$

$$= 4 (4T(n/4) + n/2) + n = 4^{2}T(n/4) + n + 2n$$

$$= 4^{2}(4T(n/8) + n/4) + n + 2n$$

$$= 4^{3}T(n/8) + n + 2n + 4n$$

$$= \dots$$

$$= 4^{k}T(1) + n + 2n + 4n + \dots + 2^{k-1}n \text{ where } 2^{k} = n$$
GUESS

$$= n^{2} + n (1 + 2 + 4 + \dots + 2^{k-1})$$

$$= n^{2} + n (2^{k} - 1)$$

$$= 2 n^{2} - n \text{ [NOT FASTER THAN BEFORE]}$$

Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

- e = MULT(a,c) and f = MULT(b,d)
- RETURN $e^{2n} + (MULT(a+b, c+d) e f) 2^{n/2} + f$

•T(n) = 3 T(n/2) + n•Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn

Time complexity of Gaussified MULT

• T(1) = 1 & T(n) = 3 T(n/2) + n

<u>Technique 2:</u> Expand recursion

T(n) = 3 T(n/2) + n

- $= 3 (3T(n/4) + n/2) + n = 3^{2}T(n/4) + n + 3/2n$
- $= 3^{2}(3T(n/8) + n/4) + n + 3/2n$
- $= 3^{3}T(n/8) + n + 3/2n + (3/2)^{2}n$
- =
- $= 3^{k}T(1) + n + 3/2n + (3/2)^{2}n + ... + (3/2)^{k-1}n$ where $2^{k} = n$

$$= 3 \log_2 n + n(1 + 3/2 + (3/2)^2 + ... + (3/2)^{k-1})$$

= $n \log_2 3 + 2n ((3/2)^k - 1)$
= $n \log_2 3 + 2n (n \log_2 3/n - 1)$
+ $(3/2)^{k-1}$
Not just 25% savings!
 $\theta(n^2) vs \theta(n^{1.58..})$

$$= 3 \log_2^{n} + n(1 + 3/2 + (3/2)^2 + \dots + (3/2)^{k-1})$$

$$^{3} + 2n ((3/2)^{k} - 1)$$

 $^{3} + 2n (n \log_{2}{3}/n - 1)$

 $=_{09/09/17} 3n \log_2 3 - 2n$ ECS 3101

Multiplication Algorithms

Kindergarten ? 3*4=3+3+3+3	n2 ⁿ Show
Grade School	n ²
Karatsuba	n ^{1.58}
Fastest Known	n logn loglogn

Next...

- 1. Covered basics of a simple design technique (Divideand-conquer) – Ch. 2 of the text.
- 2. Next, Strassen's algorithm for matrix multiplication
- 3. Later: more design and conquer algorithms: MergeSort. Solving recurrences and the Master Theorem.

Matrix multiplication

- Fundamental operation in Linear Algebra
- Used for numerical differentiation, integration, optimization etc

Naïve matrix multiplication

SimpleMatrixMultiply (A,B)

- 1. $n \leftarrow A.rows$
- 2. C ← CreateMatrix(n,n)
- 3. for $i \leftarrow 1$ to n
- 4. for $j \leftarrow 1$ to n
- 5. C[i,j] ← 0
- 6. for $k \leftarrow 1$ to n
- 7. $C[i,j] \leftarrow C[i,j] + A[i,k]^*B[k,j]$

8. return C

• Argue that the running time is $\theta(n^3)$

Faster Algorithm?

- Idea: Similar to multiplication in N, C
- Divide and conquer approach provides unexpected improvements

First attempt and Divide & Conquer

Divide A,B into 4 n/2 x n/2 matrices

- $C_{11} = A_{11} B_{11} + A_{12} B_{21}$
- $C_{12} = A_{11} B_{12} + A_{12} B_{22}$
- $C_{21} = A_{21} B_{11} + A_{22} B_{21}$
- $C_{22} = A_{21} B_{12} + A_{22} B_{22}$

Simple Recursive implementation. Running time is given by the following recurrence.

- T(1) = C, and for n>1
- $T(n) = 8T(n/2) + \theta(n^2)$
- θ(n³) time-com
 ΦΦΦS 3101

Strassen's algorithm

Avoid one multiplication (details on page 80) (but uses more additions)

Recurrence:

- T(1) = C, and for n>1
- $T(n) = 7T(n/2) + \theta(n^2)$
- How can we solve this?
- Will see that $T(n) = \theta(n^{\lg 7})$, $\lg 7 = 2.8073...$

The maximum-subarray problem

- Given an array of integers, find a contiguous subarray with the maximum sum.
- Very naïve algorithm:
- Brute force algorithm:

• At best, $\theta(n^2)$ time complexity

Can we do divide and conquer?

- Want to use answers from left and right half subarrays.
- Problem: The answer may not lie in either!
- Key question: What information do we need from (smaller) subproblems to solve the big problem?
- Related question: how do we get this information?

A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:

- T(1) = C, and for n>1
- $T(n) = 2T(n/2) + \theta(n)$

- $T(n) = \theta(n \log n)$
 - EECS 3101

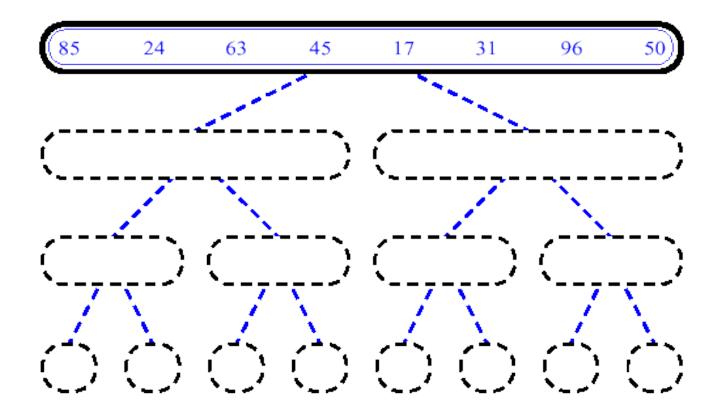
More divide and conquer : Merge Sort

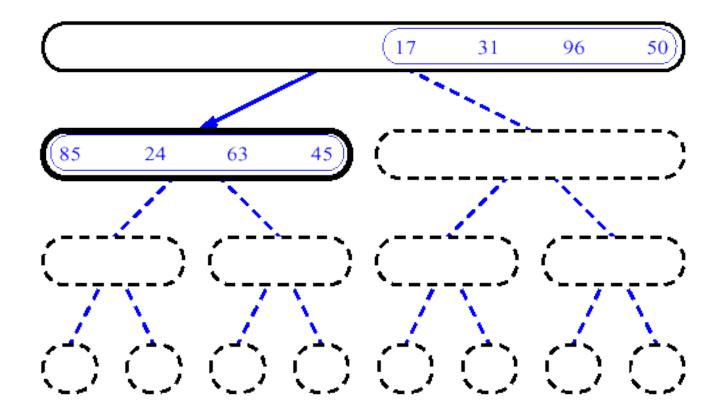
- Divide: If S has at least two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S₁ and S₂, each containing about half of the elements of S. (i.e. S₁ contains the first [n/2] elements and S₂ contains the remaining [n/2] elements).
- **Conquer**: Sort sequences S_1 and S_2 using Merge Sort.
- Combine: Put back the elements into S by merging the sorted sequences S₁ and S₂ into one sorted sequence

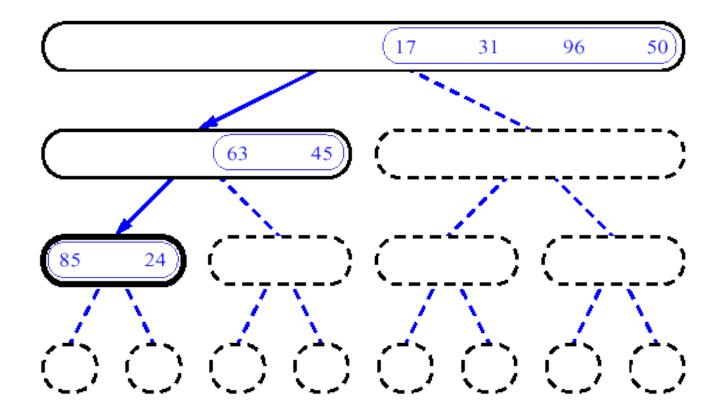
Merge Sort: Algorithm

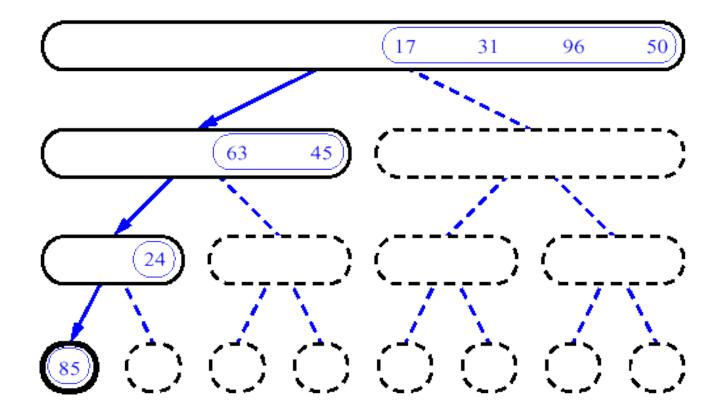
```
Merge-Sort(A, p, r)
if p < r then
    q←(p+r)/2
    Merge-Sort(A, p, q)
    Merge-Sort(A, q+1, r)
    Merge(A, p, q, r)</pre>
```

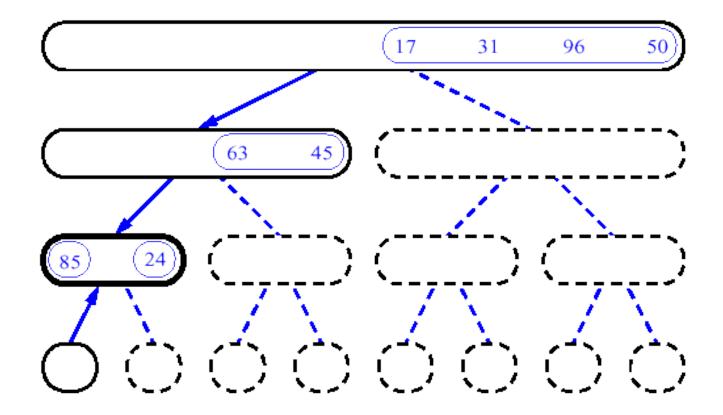
Merge(A, p, q, r)
 Take the smallest of the two topmost elements of
 sequences A[p..q] and A[q+1..r] and put into the
 resulting sequence. Repeat this, until both sequences
 are empty. Copy the resulting sequence into A[p..r].

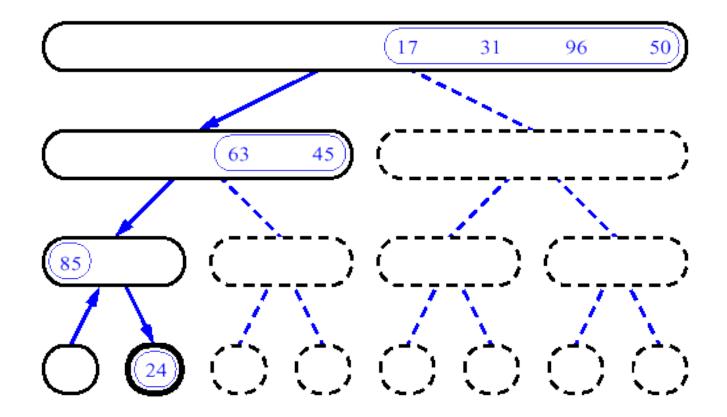


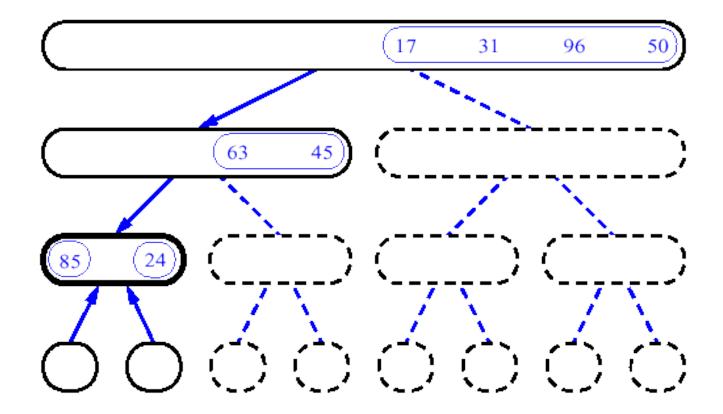


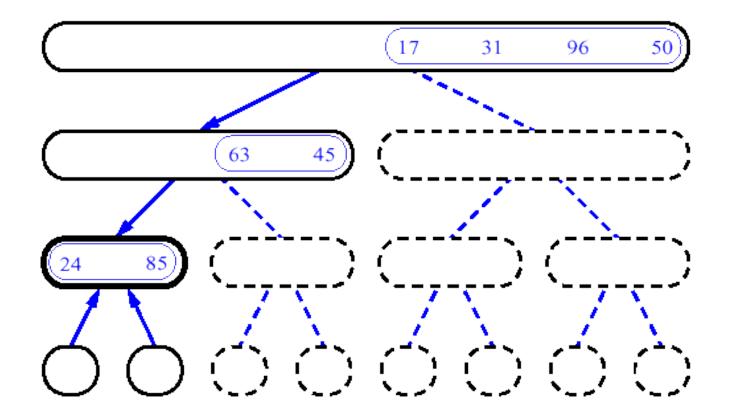


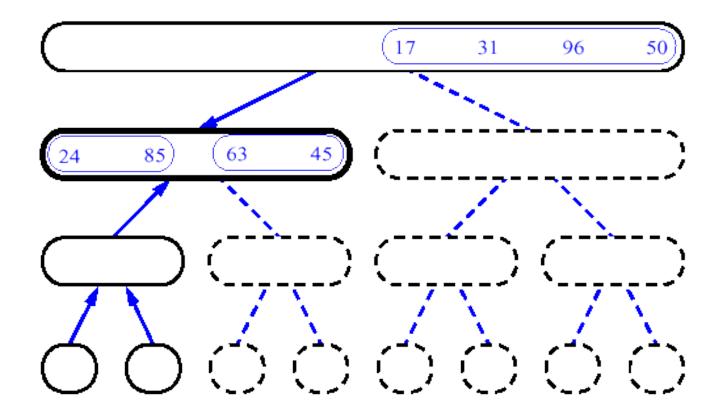


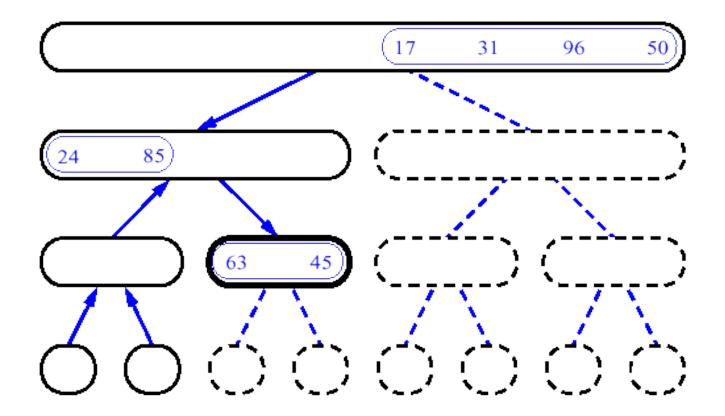


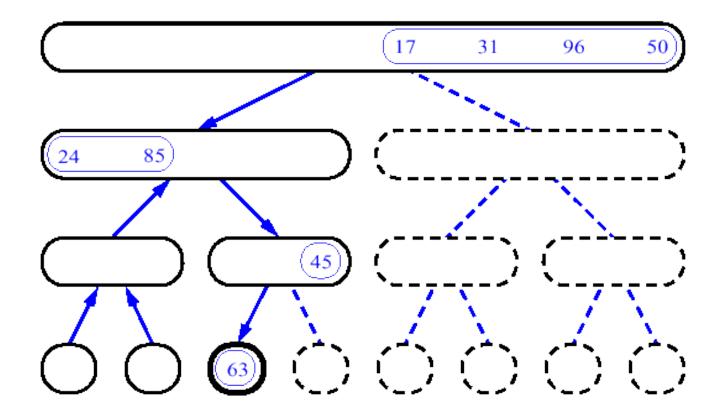


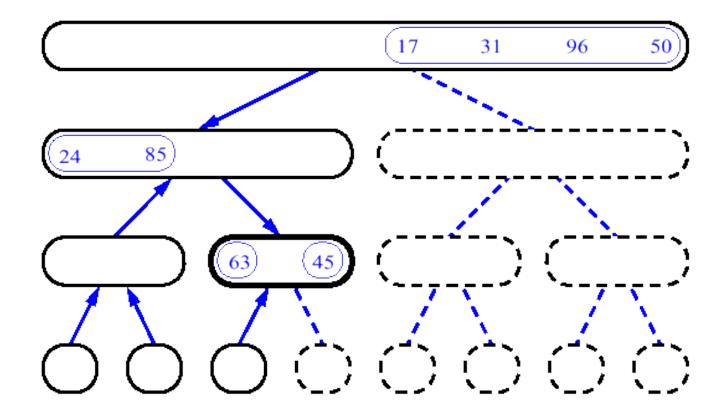


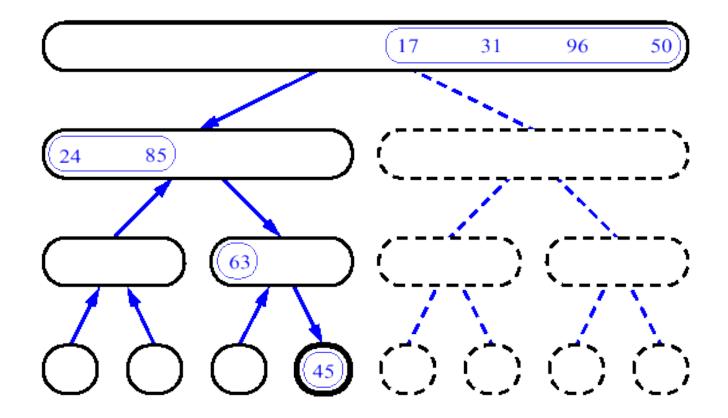


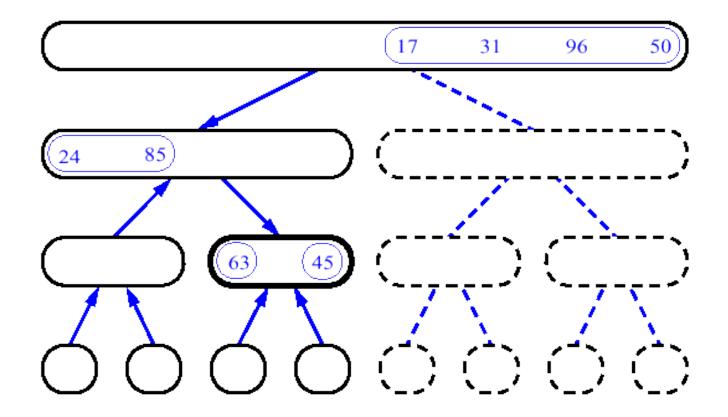


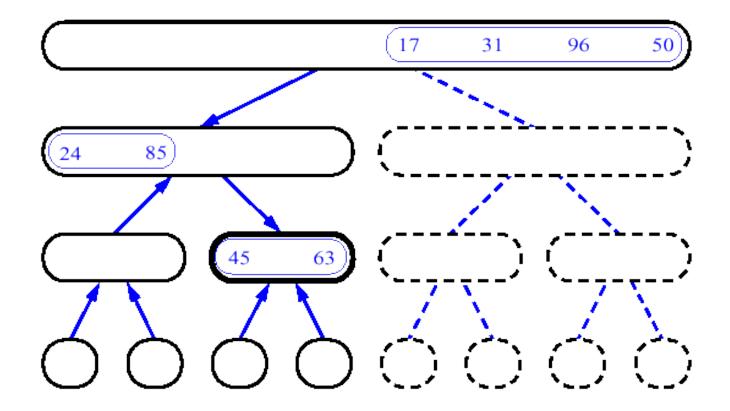


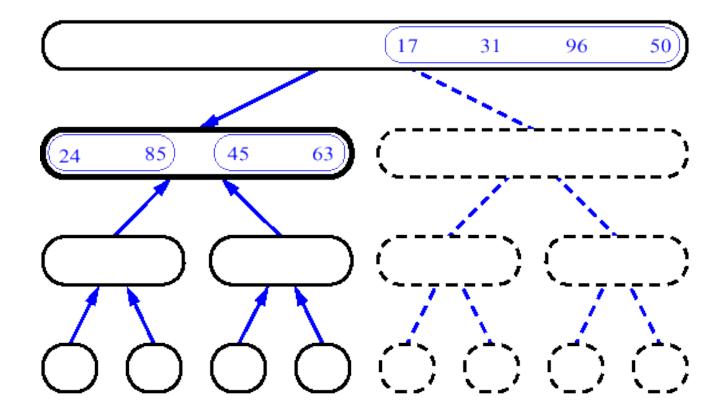


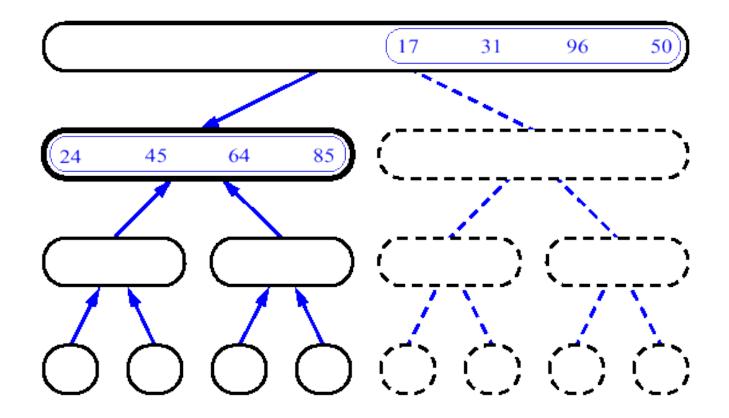


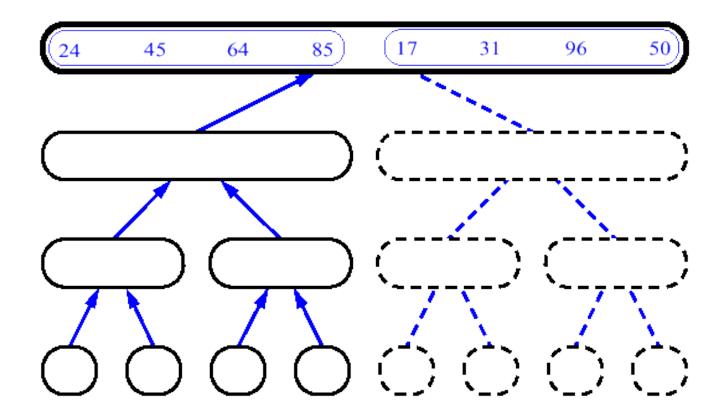


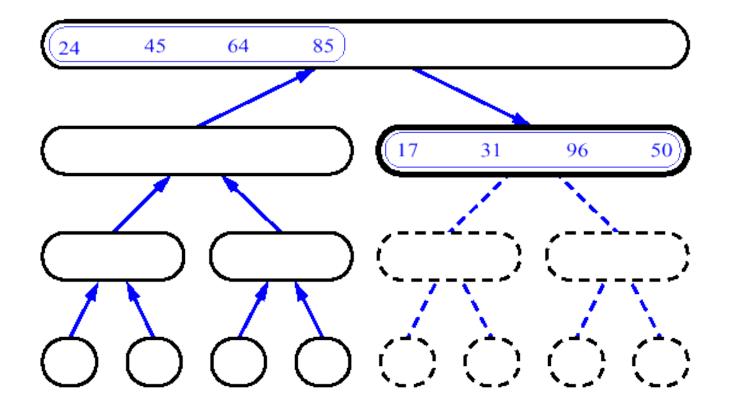


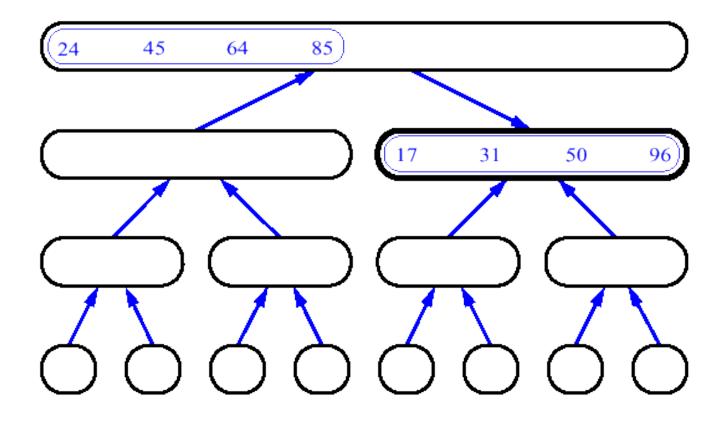


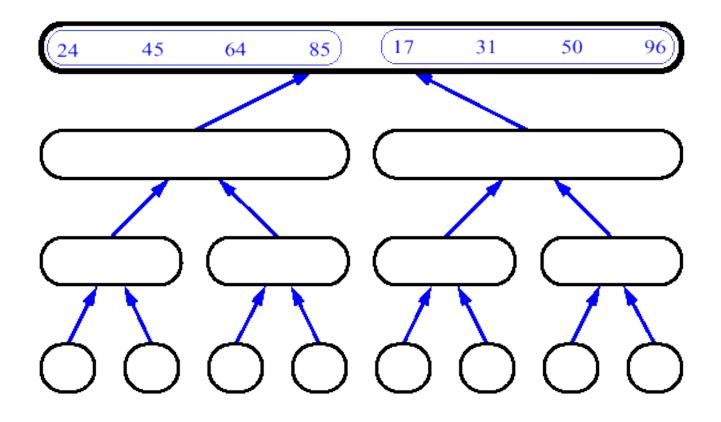


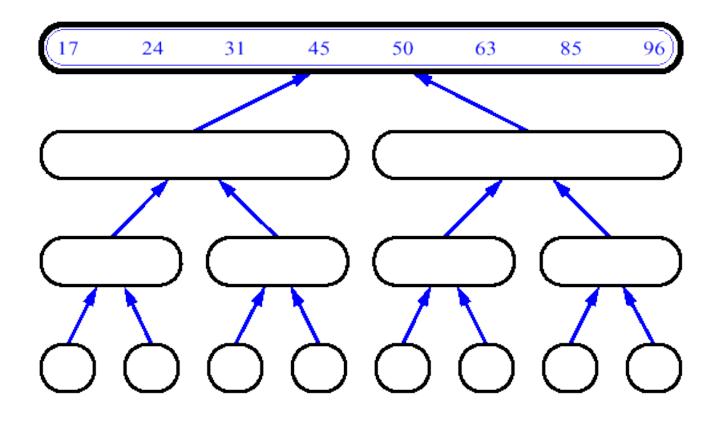






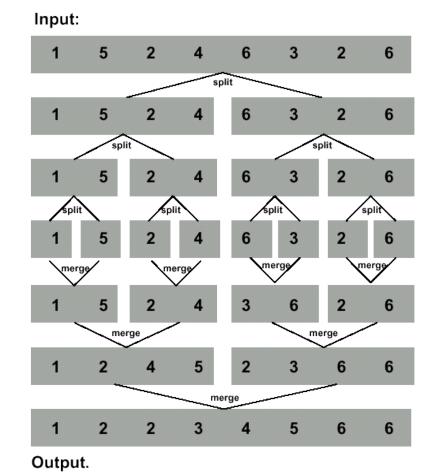






Merge Sort: summary

- To sort *n* numbers
 - if n=1 done!
 - recursively sort 2 lists of numbers $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$ elements
 - merge 2 sorted lists in $\Theta(n)$ time
- Strategy
 - break problem into similar (smaller) subproblems
 - recursively solve subproblems
 - combine solutions to answer



Recurrences

- Running times of algorithms with **Recursive calls** can be described using recurrences
- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs

Example: Merge Sort

 $T(n) = \begin{cases} \text{solving_trivial_problem} & \text{if } n = 1\\ \text{num_pieces } T(n/\text{subproblem_size_factor}) + \text{dividing} + \text{combining} & \text{if } n > 1 \end{cases}$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Solving recurrences

- Repeated substitution method
 - Expanding the recurrence by substitution and noticing patterns
- Substitution method
 - guessing the solutions
 - verifying the solution by the mathematical induction
- Recursion-trees
- Master method
 - templates for different classes of recurrences

Repeated Substitution Method

Let's find the running time of merge sort (let's assume that n=2^b, for some b).

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2T(n/2) + n & \text{if } n > 1 \end{cases}$$

$$T(n) = 2T(n/2) + n \text{ substitute}$$

$$= 2(2T(n/4) + n/2) + n \text{ expand}$$

$$= 2^2T(n/4) + 2n \text{ substitute}$$

$$= 2^2(2T(n/8) + n/4) + 2n \text{ expand}$$

$$= 2^3T(n/8) + 3n \text{ observe the pattern}$$

$$T(n) = 2^iT(n/2^i) + in$$

$$= 2^{\lg n}T(n/n) + n\lg n = n + n\lg n$$

Repeated Substitution Method

- The procedure is straightforward:
 - Substitute
 - Expand
 - Substitute
 - Expand
 - ...
 - Observe a pattern and write how your expression looks after the *i*-th substitution
 - Find out what the value of *i* (e.g., lg *n*) should be to get the base case of the recurrence (say *T*(1))
 - Insert the value of T(1) and the expression of *i* into your expression

Solve T(n) = 4T(n/2) + n1) Guess that $T(n) = O(n^3)$, i.e., that T of the form cn^3 2) Assume $T(k) \le ck^3$ for $k \le n/2$ and 3) Prove $T(n) \le cn^3$ by induction T(n) = 4T(n/2) + n (recurrence) $\leq 4c(n/2)^3 + n$ (ind. hypoth.) $= \frac{c}{2}n^3 + n$ (simplify) $= cn^3 - \left(\frac{c}{2}n^3 - n\right)$ (rearrange) $\leq cn^3$ if $c \geq 2$ and $n \geq 1$ (satisfy) Thus $T(n) = O(n^3)!$ Subtlety: Must choose c big enough to handle $T(n) = \Theta(1)$ for $n < n_0$ for some n_0

• Achieving tighter bounds

Try to show $T(n) = O(n^2)$ Assume $T(k) \leq ck^2$ T(n) = 4T(n/2) + n $\leq 4c(n/2)^2 + n$ $= cn^2 + n$ $< cn^2$ for no choice of c > 0.

The problem: We could not rewrite the equality

 $T(n) = cn^2 +$ (something positive)

as:

$$T(n) \le cn^2$$

in order to show the inequality we wanted

• Sometimes to prove inductive step, try to strengthen your hypothesis

 $-T(n) \le (answer you want) - (something > 0)$

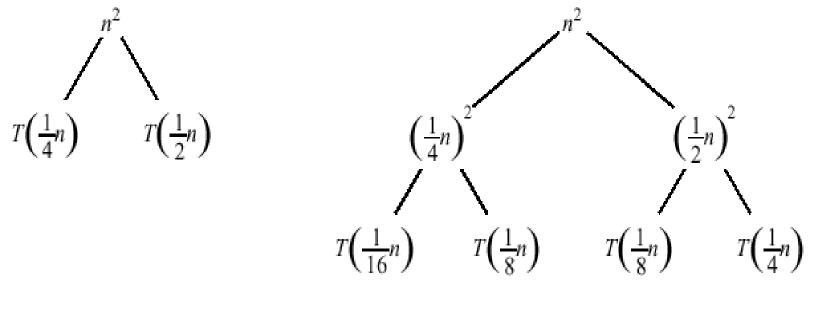
 Corrected proof: the idea is to strengthen the inductive hypothesis by subtracting lower-order terms!

Assume
$$T(k) \le c_1 k^2 - c_2 k$$
 for $k < n$
 $T(n) = 4T(n/2) + n$
 $\le 4(c_1(n/2)^2 - c_2(n/2)) + n$
 $= c_1 n^2 - 2c_2 n + n$
 $= c_1 n^2 - c_2 n - (c_2 n - n)$
 $\le c_1 n^2 - c_2 n$ if $c_2 \ge 1$

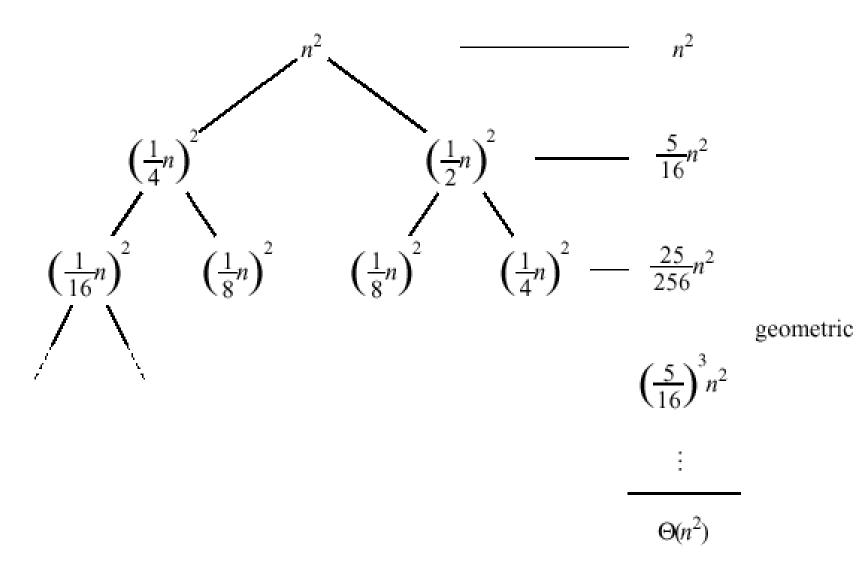
Recursion Tree

- A recursion tree is a convenient way to visualize what happens when a recurrence is iterated
- Construction of a recursion tree

$$T(n) = T(n/4) + T(n/2) + n^{2}$$



Recursion Tree



Recursion Tree



Total: $O(n \lg n)$

Master Method

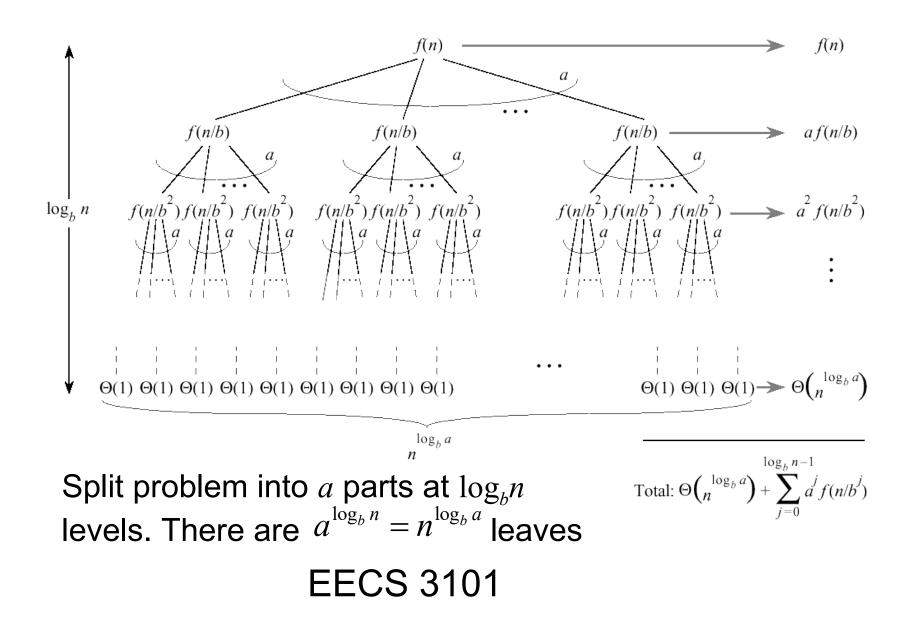
 The idea is to solve a class of recurrences that have the form

$$T(n) = aT(n/b) + f(n)$$

- $a \ge 1$ and b > 1, and f is asymptotically positive!
- Abstractly speaking, T(n) is the runtime for an algorithm and we know that
 - a subproblems of size n/b are solved recursively, each in time T(n/b)
 - f(n) is the cost of dividing the problem and combining the results. In merge-sort

 $T(n) = 2T(n/2) + \Theta(n)$

Master method



Master method

- Number of leaves:
- Iterating the recurrence, expanding the tree yields

$$a^{\log_b n} = n^{\log_b a}$$

$$T(n) = f(n) + aT(n/b)$$

$$= f(n) + af(n/b) + a^2T(n/b^2)$$

$$= f(n) + af(n/b) + a^2T(n/b^2) + \dots$$

$$+ a^{\log_b n-1}f(n/b^{\log_b n-1}) + a^{\log_b n}T(1)$$

Thus,

$$T(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) + \Theta(n^{\log_b a})$$

- The first term is a division/recombination cost (totaled across all levels of the tree)
- The second term is the cost of doing all $n^{\log_b a}$ subproblems of size 1 (total of all work pushed to leaves) EECS 3101

Master method intuition

- Three common cases:
 - Running time dominated by cost at leaves
 - Running time evenly distributed throughout the tree
 - Running time dominated by cost at root
- Consequently, to solve the recurrence, we need only to characterize the dominant term
- In each case compare f(n) with $O(n^{\log_b a})$

Master method Case 1

• $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$ - f(n) grows polynomially (by factor n^{ε}) slower than $n^{\log_b a}$

- The work at the leaf level dominates
 - Summation of recursion-tree levels $O(n^{\log_b a})$
 - Cost of all the leaves $\Theta(n^{\log_b a})$
 - Thus, the overall cost $\Theta(n^{\log_b a})$

Master method Case 2

•
$$f(n) = \Theta(n^{\log_b a} \lg n)$$

- $f(n)$ and $n^{\log_b a}$ are asymptotically the same

• The work is distributed equally throughout the tree $T(n) = \Theta(n^{\log_b a} \lg n)$

- (level cost) \times (number of levels)

Master method Case 3

- $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$
 - Inverse of Case 1
 - -f(n) grows polynomially faster than $n^{\log_b a}$
 - Also need a regularity condition $\exists c < 1 \text{ and } n_0 > 0 \text{ such that } af(n/b) \le cf(n) \forall n > n_0$
- The work at the root dominates

 $T(n) = \Theta(f(n))$

Master Theorem Summarized

• Given a recurrence of the form T(n) = aT(n/b) + f(n)

1.
$$f(n) = O(n^{\log_b a - \varepsilon})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a})$$

2.
$$f(n) = \Theta(n^{\log_b a})$$

$$\Rightarrow T(n) = \Theta(n^{\log_b a} \lg n)$$

3.
$$f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{ and } af(n/b) \le cf(n), \text{ for some } c < 1, n > n_0$$

$$\Rightarrow T(n) = \Theta(f(n))$$

• The master method cannot solve every recurrence of this form; there is a gap between cases 1 and 2, as well as cases 2 and 3

Using the Master Theorem

- Extract a, b, and f(n) from a given recurrence
- Determine $n^{\log_b a}$
- Compare f(n) and $n^{\log_b a}$ asymptotically
- Determine appropriate MT case, and apply
- Example merge sort

$$T(n) = 2T(n/2) + \Theta(n)$$

$$a = 2, \ b = 2; \ n^{\log_b a} = n^{\log_2 2} = n = \Theta(n)$$

Also $f(n) = \Theta(n)$

$$\Rightarrow \text{Case 2:} \ T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n \lg n)$$

Examples

T(n) = T(n/2) + 1 $a = 1, b = 2; n^{\log_2 1} = 1$ also $f(n) = 1, f(n) = \Theta(1)$ $\Rightarrow \text{Case 2:} T(n) = \Theta(\lg n)$

T(n) = 9T(n/3) + n

```
Binary-search(A, p, r, s):
 q←(p+r)/2
 if A[q]=s then return q
 else if A[q]>s then
    Binary-search(A, p, q-1, s)
 else Binary-search(A, q+1, r, s)
```

$$a = 9, b = 3;$$

$$f(n) = n, f(n) = O(n^{\log_3 9 - \varepsilon}) \text{ with } \varepsilon = 1$$

$$\Rightarrow \text{Case 1: } T(n) = \Theta(n^2)$$

Examples

$$T(n) = 3T(n/4) + n \lg n$$

$$a = 3, b = 4; \ n^{\log_4 3} = n^{0.793}$$

$$f(n) = n \lg n, \ f(n) = \Omega(n^{\log_4 3 + \varepsilon}) \text{ with } \varepsilon \approx 0.2$$

$$\Rightarrow \text{Case 3:}$$

Regularity condition

$$af(n/b) = 3(n/4)\lg(n/4) \le (3/4)n\lg n = cf(n)$$
 for $c = 3/4$
 $T(n) = \Theta(n\lg n)$

$$T(n) = 2T(n/2) + n \lg n$$

$$a = 2, b = 2; \ n^{\log_2 2} = n^1$$

$$f(n) = n \lg n, \ f(n) = \Omega(n^{1+\varepsilon}) \text{ with } \varepsilon ?$$

also $n \lg n/n^1 = \lg n$
 \Rightarrow neither Case 3 nor Case 2!
EECS 3101

Examples

$$T(n) = 4T(n/2) + n^{3}$$

$$a = 4, b = 2; n^{\log_{2} 4} = n^{2}$$

$$f(n) = n^{3}; f(n) = \Omega(n^{2})$$

$$\Rightarrow \text{Case 3: } T(n) = \Theta(n^{3})$$

Checking the regularity condition $4f(n/2) \le cf(n)$ $4n^3/8 \le cn^3$ $n^3/2 \le cn^3$ c = 3/4 < 1

Next...

- 1. Covered basics of a simple design technique (Divideand-conquer) – Ch. 4 of the text.
- 2. Next, more sorting algorithms.

