
EECS 3101
09/09/17 69

Next: Correctness

• How can we show that the algorithm works

correctly for all possible inputs of all possible

sizes?

• Exhaustive testing not feasible.

• Analytical techniques are useful essential

here.

EECS 3101
09/09/17 70

Q1. Find the max of n numbers (stored in array A)

 Formal specs:

 INPUT: A[1..n] - an array of integers

 OUTPUT: an element m of A such that A[j] m,

 1 j length(A)

 Find-max (A)
 1. max A[1]

 2. for j 2 to length(A)

 3. do if (max < A[j])

 4. max A[j]

 5. return max

Find-max revisited

EECS 3101
09/09/17 71

 INPUT: A[1..n] - an array of integers

 OUTPUT: an element m of A such that m A[j],

 1 j length(A)

 Find-max (A)

 1. max A[1]

 2. for j 2 to length(A)

 3. do if (max < A[j])

 4. max A[j]

 5. return max

Proof 1 [by contradiction]: Suppose the algorithm is incorrect. Then

for some input A,

 (a) max is not an element of A or

 (b) (j | max < A[j]).

 max is initialized to and assigned to elements of A – so (a) is

impossible. WHY?

 (b) After the jth iteration of the for-loop (lines 2 – 4), max A[j].

From lines 3,4, max only increases.

 Therefore, upon termination, max A[j], which contradicts (b).

Prove that for any valid

Input, the output of

Find-max satisfies the

output condition.

Correctness Proof 1

EECS 3101
09/09/17 72

Correctness Proof 1 - comments

• The preceding proof reasons about the whole

algorithm

• It is possible to prove correctness by induction as

well: this is left as an exercise for you.

• What if the algorithm/program was very big and had

many function calls, nested loops, if-then’s and other

standard features?

• Need a simpler, more “modular” strategy.

EECS 3101
09/09/17 73

 INPUT: A[1..n] - an array of integers

 OUTPUT: an element m of A such that m A[j],

 1 j length(A)

 Find-max (A)

 1. max A[1]

 2. for j 2 to length(A)

 3. do if (max < A[j])

 4. max A[j]

 5. return max

 Proof 2 [use loop invariants]:

 (identify invariant) At the beginning of iteration j of for loop, max contains the

maximum of A[1..j-1].

 (Proof) Clearly true for j=2. For j = 3,4,…, assume that invariant holds for j-1.

So at the beginning of iteration j-1 max contains the maximum of A[1..j-2].

 Case (a) A[j-1] is the maximum of A[1..j-1]. In lines 3,4, max is set to A[j-1].

 Case (b) A[j-1] is not the maximum of A[1..j-1], so the maximum of A[1..j-1] is

in A[1..j-2]. By our assumption max already has this value and by lines 3-4

max is unchanged in this iteration.

Prove that for any valid

Input, the output of

Find-max satisfies the

output condition.

Correctness Proof – 2 (typos fixed)

EECS 3101
09/09/17 74

 INPUT: A[1..n] - an array of integers

 OUTPUT: an element m of A such that m A[j],

 1 j length(A)

 Find-max (A)

 1. max A[1]

 2. for j 2 to length(A)

 3. do if (max < A[j])

 4. max A[j]

 5. return max

 Proof using loop invariants - continued:

 We proved that the invariant holds at the beginning of iteration j

 for each j used by Find-max.

 Upon termination, j = length(A)+1. (WHY?)

 The invariant holds, and so max contains the maximum of A[1..n]

 -- STRUCTURED PROOF TECHNIQUE!

 -- VERY SIMILAR TO INDUCTION!
We will see more non-trivial examples later.

Correctness Proof – continued

EECS 3101
09/09/17 75

More about correctness

• Don’t tack on a formal proof of correctness after coding

to make the professor happy.

• It need not be mathematical mumbo jumbo.

• Goal: To think about algorithms in such way that their

correctness is transparent.

1. Iterative Algorithms 2. Recursive Algorithms

“Take one step at a time

 towards the final destination” LATER.

loop (until done)

 take step

end loop

EECS 3101
09/09/17 76

A good way to structure many programs:

– Store the key information you currently know in

some data structure.

– In the main loop,

• take a step forward towards destination

 by making a simple change to this data.

Loop invariants

EECS 3101
09/09/17 77

Insertion sort - correctness

for j=2 to length(A)

 do key=A[j]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

for j=2 to length(A)

 do key=A[j]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

What is a good loop invariant?

It is easy to write a loop invariant if you understand what

the algorithm does.

Use assertions.

EECS 3101
09/09/17 78

 An assertion is a statement about the current state of
the data structure that is either true or false.

 Useful for

– thinking about algorithms

– developing

– describing

– proving correctness

 An assertion is not a task for the algorithm to perform.

 It is only a comment that is added for the benefit of the

reader.

Assertions

An assertion need not

consist of formal/math

mumbo jumbo

Use an informal description

EECS 3101
09/09/17 79

Example of Assertions

• Preconditions: Any assumptions that must be true

about the input instance.

• Postconditions: The statement of what must be true

when the algorithm/program returns.

Correctness:

<PreCond> & <code> <PostCond>

If the input meets the preconditions,

 then the output must meet the postconditions.

If the input does not meet the preconditions,

 then nothing is required.

Assertions – contd.

EECS 3101
09/09/17 80

Example of Assertions

Assertions – contd.

<preCond>
codeA
loop
 <loop-invariant>

exit when <exit Cond>
 codeB
endloop
codeC
<postCond>

EECS 3101
09/09/17 81

We must show three things about loop invariants:
 Initialization – it is true prior to the first

iteration
 Maintenance – if it is true before an iteration,

it remains true before the next iteration

Termination – when loop terminates the invariant
gives a useful property to show the correctness
of the algorithm

Proves that IF the program terminates then it works

 Partial Correctness &

 Termination

Partial correctness

Correctness

EECS 3101
09/09/17 82

Correctness of Insertion sort

for j=2 to length(A)

 do key=A[j]

 //Insert A[j] into the sorted

 //sequence A[1..j-1]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

for j=2 to length(A)

 do key=A[j]

 //Insert A[j] into the sorted

 //sequence A[1..j-1]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

Invariant: at the start
of
for loop iteration j,
A[1…j-1] consists of
elements
originally in A[1…j-1]
but in
sorted order

Initialization: j = 2, the invariant trivially holds because

A[1] is a sorted array

EECS 3101
09/09/17 83

Correctness of Insertion sort – contd.

for j=2 to length(A)

 do key=A[j]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

for j=2 to length(A)

 do key=A[j]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

Invariant: at the start
of
for loop iteration j,
A[1…j-1]
consists of elements
originally in A[1…j-1]
but in sorted order

Maintenance: the inner while loop moves elements A[j-1],

A[j-2], …, A[k] one position right without changing their

order. Then the former A[j] element is inserted into kth

position so that A[k-1] A[k] A[k+1].

A[1…j-1] sorted + A[j] A[1…j] sorted

EECS 3101
09/09/17 84

Correctness of Insertion sort – contd.

for j=2 to length(A)

 do key=A[j]

 Insert A[j] into the sorted

sequence A[1..j-1]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

for j=2 to length(A)

 do key=A[j]

 Insert A[j] into the sorted

sequence A[1..j-1]

 i=j-1

 while i>0 and A[i]>key

 do A[i+1]=A[i]

 i--

 A[i+1]:=key

Invariant: at the start
of
for loop iteration j,
A[1…j-1]
consists of elements
originally in A[1…j-1]
but in
sorted order

Termination: the loop terminates, when j=n+1.

Then the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order”

EECS 3101
09/09/17 85

1. Spent some time formalizing asymptotic notation.

2. Have seen insertion-sort and loop invariants for it.

 The invariant falls under the “more of the input” class in

Jeff Edmonds’ notation.

3. Next, selection sort; the invariant for this falls under the

“more of the output” class in Jeff Edmonds’ notation.

More on correctness of iterative algorithms

EECS 3101
09/09/17 86

Recall that

1. Loop invariants allow you to reason about a single

iteration of the loop.

2. The test condition of the loop is not part of the invariant.

3. Design the loop invariant so that when the termination

condition is attained, and the invariant is true, then the

goal is reached: invariant + termination => goal

4. Create invariants which are

 -- simple, and

-- capture all the goals of the algorithm (except

termination)

It is best to use mathematical symbols for loop invariants;

when this is too complicated, use clear prose and

common sense.

Loop invariants

It takes practice

EECS 3101
09/09/17 87

I/O specs: same as insertion sort

Algorithm: Given an array A of n integers, sort them by

repetitively selecting the smallest among the yet

unselected integers.

Loop invariant: at the beginning of the jth iteration
• The smallest j-1 values are sorted in descending order

in locations [1,j-1]

See if you can prove it.

Selection sort

Is this precise enough?

Swap the smallest integer with the integer currently in the

place where the smallest integer should go.

•Is this enough? No….

and the rest are in locations [n-j,n].

EECS 3101
09/09/17 88

Another kind of loop invariant

Narrowed the search space, e.g. Binary search

•Preconditions

–Key 25

–Sorted List

•Postcondition

–Find key in list (if present).

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

EECS 3101
09/09/17 89

Define Loop Invariant

• Maintain a sublist.

• If the key is contained in the original list, then the key is

contained in the sublist.

Define an iteration of loop

•Cut sublist in half.

•Determine which half the key would be in.

•Keep that half.

Caveat:

Invariant must not assume that the element is present in

the list. So it should say something like

“If the key is contained in the original list, then the key is

contained in the sublist.”

EECS 3101
09/09/17 90

Define an iteration of loop – contd.

key 25

If key ≤ mid,

then key is

in

left half.

If key > mid,

then key is in

right half.

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

It is faster not to check if the middle element is the key.

EECS 3101
09/09/17 91

The devil is in the details…

• Maintain a sublist with end points i & j

i j

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

Does not matter which, but you need to be consistent.

•If the sublist has even length, which element is taken to

be mid?

 Does not matter – choose right.

EECS 3101
09/09/17 92

An easy mistake…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then

key is in left half:

[i,mid-1].

If key > mid, then

key is in right half:

[mid,j]

If the middle element is the key, it can be skipped over!

EECS 3101
09/09/17 93

A fix…

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid,

then key is in

left half: [i,mid-1].

If key > mid,

then key is in

right half: [mid,j].

EECS 3101
09/09/17 94

Another possible fix…

• making the left half slightly bigger.

key 43

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key ≤ mid, then key

is in left half: [i,mid].
If key > mid, then key is

in right half: [mid+1,j].

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

No progress is made. Loop for ever!

EECS 3101
09/09/17 95

Lessons to be learnt

• Use the loop invariant method to think about

algorithms.

• Be careful with your definitions.

• Be sure that the loop invariant is always maintained.

• Be sure progress is always made.

EECS 3101
09/09/17 96

Running time of binary search

 From now, we will omit details about accounting for

running time as follows. The details are tedious but can

be supplied easily. We will also ignore floors and

ceilings. This usually makes no difference.

The sublist is of size n, n/2,
n/4,

n/8,…,1. How many

steps is that?

Each step takes (1) time.

Total running time = (log n)

EECS 3101
09/09/17 97

Pseudocode for binary search

