#### **Back to asymptotics.....**

We will now look more formally at the process of simplifying running times and other measures of complexity.

### **Asymptotic analysis**

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
  - − like "rounding": 1,000,001 ≈ 1,000,000
  - $-3n^2 \approx n^2$
- Capturing the essence: how the running time of an algorithm increases with the size of the input *in the limit*.
  - Asymptotically more efficient algorithms are best for all but small inputs

### **Asymptotic notation**

- The "big-Oh" O-Notation
  - asymptotic upper bound
  - $f(n) \in O(g(n))$ , if there exists constants c and  $n_0$ , s.t.  $f(n) \le c$ g(n) for  $n \ge n_0$
  - f(n) and g(n) are functions over non-negative integers
- Used for *worst-case* analysis



- The "big-Omega"  $\Omega-Notation$ 
  - asymptotic lower bound
  - $f(n) ∈ Ω(g(n)) \text{ if there exists} \\ \text{ constants } c \text{ and } n_0, s.t. c g(n) ≤ \\ f(n) \text{ for } n ≥ n_0$
- Used to describe *best-case* running times or lower bounds of algorithmic problems
  - E.g., lower-bound of searching in an unsorted array is  $\Omega(n)$ .



- Simple Rule: Drop lower order terms and constant factors.
  - $-50 n \log n \in \mathcal{O}(n \log n)$

$$-7n-3 \in O(n)$$

$$-8n^2\log n + 5n^2 + n \in \mathcal{O}(n^2\log n)$$

 Note: Even though 50 n log n ∈ O(n<sup>5</sup>), we usually try to express a O() expression using as small an order as possible

- The "big-Theta"  $\Theta$ -Notation
  - asymptoticly tight bound
  - $-f(n) \in \Theta(g(n)) \text{ if there exists} \\ \text{ constants } c_1, c_2, \text{ and } n_0, s.t. \ \mathbf{c}_1 \\ \mathbf{g(n)} \leq \mathbf{f(n)} \leq \mathbf{c_2} \mathbf{g(n)} \text{ for } n \geq n_0 \\ \end{array}$
- $f(n) \in \Theta(g(n))$  if and only if f(n) $\in O(g(n))$  and  $f(n) \in \Omega(g(n))$
- O(f(n)) is often misused instead of  $\Theta(f(n))$



- Two more asymptotic notations
  - "Little-Oh" notation f(n)=o(g(n)) non-tight analogue of Big-Oh
    - For every *c*, there should exist  $n_0$ , s.t.  $f(n) \le c g(n)$ for  $n \ge n_0$
    - Used for comparisons of running times.
       If f(n) ∈ o(g(n)), it is said that g(n) dominates f(n).
    - More useful defn:

$$f(n)$$

$$\lim_{n \to \infty} ---- = 0$$

- "Little-omega" notation  $f(n) \in \omega(g(n))$ non-tight analogue of Big-Omega

09/09/17

• (VERY CRUDE) Analogy with real numbers

$$-f(n) = O(g(n)) \cong f \le g$$
  

$$-f(n) = \Omega(g(n)) \cong f \ge g$$
  

$$-f(n) = \Theta(g(n)) \cong f = g$$
  

$$-f(n) = o(g(n)) \cong f < g$$
  

$$-f(n) = \omega(g(n)) \cong f > g$$

• <u>Abuse of notation</u>: f(n) = O(g(n)) actually means  $f(n) \in O(g(n))$ .

### **Points to ponder and lessons**

Common "colloquial" uses:  $\Theta(1) - constant.$   $n^{\Theta(1)} - polynomial$  $2^{\Theta(n)} - exponential$   $\frac{\text{Be careful!}}{n^{\Theta(l)} \neq \Theta(n^{l})}$  $2^{\Theta(n)} \neq \Theta(2^{n})$ 

- When is asymptotic analysis useful?
- When is it NOT useful?

Many, many abuses of asymptotic notation in Computer Science literature.

Lesson: Always remember the implicit assumptions...

### **Comparison of Running Times**

| Running                  | Maximum p | problem size | (n)     |
|--------------------------|-----------|--------------|---------|
| Time                     | 1 second  | 1 minute     | 1 hour  |
|                          |           |              |         |
| 400 <i>n</i>             | 2500      | 150000       | 900000  |
| 20 <i>n</i> log <i>n</i> | 4096      | 166666       | 7826087 |
| $2n^2$                   | 707       | 5477         | 42426   |
| $n^4$                    | 31        | 88           | 244     |
| $2^n$                    | 19        | 25           | 31      |

### **Classifying functions**

| T(n)                    | 10    | 100    | 1,000 | 10,000  |
|-------------------------|-------|--------|-------|---------|
| log <i>n</i>            | 3     | 6      | 9     | 13      |
| <b>n</b> <sup>1/2</sup> | 3     | 10     | 31    | 100     |
| n                       | 10    | 100    | 1,000 | 10,000  |
| <b>n</b> log <b>n</b>   | 30    | 600    | 9,000 | 130,000 |
| <b>n</b> <sup>2</sup>   | 100   | 10,000 | 106   | 108     |
| n <sup>3</sup>          | 1,000 | 106    | 109   | 1012    |
| 2 <sup>n</sup>          | 1,024 | 1030   | 10300 | 103000  |

09/09/17

#### **Hierarchy of functions**





### **Logarithmic functions**

- $log_{10}n = #$  digits to write n
- $\log_2 n = \#$  bits to write n = 3.32  $\log_{10} n$

Differ only by a multiplicative constant.

•  $\log(n^{1000}) = 1000 \log(n)$ 

Poly Logarithmic (a.k.a. polylog)

 $(\log n)^5 = \log^5 n$ 

#### **Crucial asymptotic facts**

Linear << Quadratic  $10000 n \ll 0.0001 n^2$  For sufficiently large n

## 

#### Are constant functions constant?

The running time of the algorithm is a "constant" It does not depend **significantly** on the size of the input.



### **Polynomial Functions**

Lie in between

Lie in between

## Quadratic

- n<sup>2</sup>
- 0.001 n<sup>2</sup>
- 1000 n<sup>2</sup>
- $5n^2 + 3000n + 2\log n^4$

## Polynomial

•n<sup>c</sup>

- n<sup>0.0001</sup>
- n<sup>10000</sup>
- $5n^2 + 8n + 2\log n$
- $5n^2 \log n$
- 5n<sup>2.5</sup>

09/09/17

#### **Exponential functions**



09/09/17

**EECS 3101** 

65

#### **Proving asymptotic expressions**

**Use definitions!** 

e.g.  $f(n) = 3n^2 + 7n + 8 = \theta(n^2)$   $f(n) \in \Theta(g(n))$  if there exists constants  $c_1, c_2$ , and  $n_0, s.t.$  $c_1 g(n) \le f(n) \le c_2 g(n)$  for  $n \ge n_0$ 

Here  $g(n) = n^2$ One direction ( $f(n) = \Omega(g(n))$ ) is easy  $c_1 g(n) \le f(n)$  holds for  $c_1 = 3$  and  $n \ge 0$ 

The other direction (f(n) = O(g(n)) needs more care  $f(n) \le c_2 g(n)$  holds for  $c_2 = 18$  and  $n \ge 1$  (CHECK!)

 $\underset{09/09/17}{\mathbf{So}} n_0 = 1$ 

#### **Proving asymptotic expressions – contd.**

#### **Caveats!**

- **1.** constants  $c_1, c_2$  MUST BE POSITIVE.
- 2. Could have chosen  $c_2 = 3 + \epsilon$  for any  $\epsilon > 0$ . WHY?

-- because 7n + 8  $\leq \epsilon n^2$  for  $n \geq n_0$  for some sufficiently large  $n_0$ . Usually, the smaller the  $\epsilon$  you choose, the harder it is to find  $n_0$ . So choosing a large  $\epsilon$  is easier.

3. Order of quantifiers  $\exists c_1 \ c_2 \ \exists n_0 \forall n \ge n_{0,} c_1 g(n) \le f(n) \le c_2 g(n)$ vs  $\exists n_0 \forall n \ge n_0 \exists c_1 \ c_2, c_1 g(n) \le f(n) \le c_2 g(n)$ -- allows a different  $c_1$  and  $c_2$  for each n. Can choose  $c_2 = 1/n!!$  So we can "prove"  $n^3 = \Theta$  ( $n^2$ ). EECS 310167

## Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have different properties, grow much slower; mathematically natural distinction.

#### **Practical reasons**

1. almost every algorithm ever designed and every algorithm considered practical are very low degree polynomials with reasonable constants.

2. a large class of natural, practical problems seem to allow only exponential time algorithms. Most experts believe that there do not exist any polynomial time algorithms for any of these; i.e.  $P \neq NP$ .