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Back to asymptotics……

 We will now look more formally at the process 
of simplifying running times and other 
measures of complexity. 
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Asymptotic analysis

• Goal: to simplify analysis of running time by getting 
rid of ”details”, which may be affected by specific 

implementation and hardware 
– like “rounding”:  1,000,001  1,000,000

– 3n2  n2

• Capturing the essence: how the running time of an 
algorithm increases with the size of the input in the 
limit.
– Asymptotically more efficient algorithms are best 

for all but small inputs 
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Asymptotic notation

• The “big-Oh” O-Notation
– asymptotic upper bound

– f(n)  O(g(n)), if there exists 
constants c and n0, s.t. f(n)  c 
g(n) for n  n0

– f(n) and g(n) are functions over 
non-negative integers

• Used for worst-case analysis
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• The “big-Omega” Notation
– asymptotic lower bound
– f(n)  (g(n)) if there exists 

constants c and n0, s.t. c g(n)  
f(n) for n  n0

• Used to describe best-case 
running times or lower 
bounds of algorithmic 
problems
– E.g., lower-bound of searching 

in an unsorted array is (n). 
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Asymptotic notation – contd.

• Simple Rule: Drop lower order terms and 
constant factors.
– 50 n log n  O(n log n)

– 7n - 3  O(n)

– 8n2 log n + 5n2 + n  O(n2 log n)

• Note: Even though 50 n log n  O(n5), we 
usually try to express a O() expression using  
as small an order as possible
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• The “big-Theta” Notation
– asymptoticly tight bound

– f(n)  (g(n)) if there exists 
constants c1, c2, and n0, s.t.  c1 
g(n)  f(n)  c2 g(n) for n  n0

• f(n)  (g(n)) if and only if f(n) 
 (g(n))  and f(n)  (g(n))

• O(f(n)) is often misused 
instead of (f(n)) 

Input Size

R
un

ni
ng

 T
im

e

)(nf

0n

Asymptotic notation – contd.

)(ngc 2

)(ngc 1



EECS 310109/09/17 54

Asymptotic notation – contd.

• Two more asymptotic notations
– "Little-Oh" notation f(n)=o(g(n))

non-tight analogue of Big-Oh

• For every c, there should exist n0 , s.t. f(n)  c g(n) 
for n  n0

• Used for comparisons of running times. 

   If f(n)  o(g(n)), it is said that g(n) dominates f(n).

• More useful defn:

– "Little-omega" notation f(n)  (g(n))
non-tight analogue of Big-Omega

            f(n)  
lim      -----  = 0
n   g(n)
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Asymptotic notation – contd.

• (VERY CRUDE) Analogy with real numbers
– f(n) = O(g(n))  f g
– f(n) = (g(n))  f g
– f(n) = (g(n))  f g
– f(n) = o(g(n))  f g
– f(n) = (g(n))  f g

• Abuse of notation: f(n) = O(g(n)) actually 
means f(n) O(g(n)).
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Points to ponder and lessons

Common “colloquial” uses:  
(1) – constant.
n(1) – polynomial

     2(n) – exponential 

• When is asymptotic analysis useful?
• When is it NOT useful?

Many, many abuses of asymptotic notation in Computer 
Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!
n(1)  (n1)

2(n)  (2n)
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Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31
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Classifying  functions

T(n) 10 100 1,000 10,000

log n   3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n



EECS 310109/09/17 59

Hierarchy of functions

Functions
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Classifying Polynomials

Polynomial

L
inear

Q
uad ratic

C
ubi c

?
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5n3 log7(n)

Dominant term is of  the form nc 
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Logarithmic functions

• log10n = # digits to write n

• log2n  = # bits to write n

          = 3.32 log10n

• log(n1000) = 1000 log(n)

Differ only by a 
multiplicative 
constant.

(log n)5  = log5 n

Poly Logarithmic (a.k.a. polylog)
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Crucial asymptotic facts

Logarithmic  <<  Polynomial
     log1000 n  <<  n0.001 For sufficiently large n

Linear  <<  Quadratic
   10000 n  <<  0.0001 n2 For sufficiently large n

Polynomial  <<  Exponential
    n1000  <<  20.001 n For sufficiently large n
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Are constant functions constant?

• 5
• 1,000,000,000,000
•  0.0000000000001
• -5
•  0
•  8 + sin(n)

Yes
Yes
Yes
No

No
Yes

Lie in between

7

9

The running time of the algorithm is a “constant” 
It does not depend significantly 

on the size of the input.

Write  θ(1).
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Polynomial Functions

Quadratic
• n2 

• 0.001 n2

• 1000 n2

•  5n2  + 3000n + 2log n 

Polynomial
•nc 

• n0.0001

• n10000

• 5n2 + 8n + 2log n 
• 5n2 log n  
• 5n2.5 

Lie in between

Lie in between
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Exponential functions

• 2n 

• 20.0001 n

• 210000 n

• 8n

• 2n / n100 
•2n · n100

= 23n

> 20.5n

< 22n

                20.5n  > n100

2n = 20.5n · 20.5n > n100 · 20.5n

            2n / n100 > 20.5n
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Proving asymptotic expressions

Use definitions!

e.g.  f(n) = 3n2 + 7n  + 8 = θ(n2)
f(n)  (g(n)) if there exists constants c1, c2, and n0, s.t.  
c1 g(n)  f(n)  c2 g(n) for n  n0

Here g(n) = n2 
One direction (f(n) = (g(n)) is easy
c1 g(n)  f(n) holds for c1 = 3 and n  0

The other direction (f(n) = (g(n)) needs more care
f(n)  c2 g(n) holds for c2 = 18 and n  1 (CHECK!)

So n0 = 1
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Proving asymptotic expressions – contd.

Caveats!
1. constants c1, c2 MUST BE POSITIVE .
2. Could have chosen c2 = 3 + for any . WHY?

-- because 7n  + 8 n2 for n  n0  for some sufficiently 
large  n0. Usually, the smaller the you choose, the 
harder it is to findn0. So choosing a large is easier

3. Order of quantifiers
c1 c2 n0  n  n0, c1g(n)  f(n)  c2g(n) 
vs
n0  n  n0 c1 c2, c1g(n)  f(n)  c2g(n) 
-- allows a different c1 and c2 for each n. Can choose 
c2 = 1/n!! So we can “prove” n3 =  (n2).
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Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have 
different properties, grow much slower; mathematically 
natural distinction. 

Practical reasons 
 1. almost every algorithm ever designed and every 
algorithm considered practical are very low degree 
polynomials with reasonable constants.
 2. a large class of natural, practical problems seem to 
allow only exponential time algorithms. Most experts 
believe that there do not exist any polynomial time 
algorithms for any of these; i.e. P  NP.
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