
EECS 310109/09/17 48

Back to asymptotics……

 We will now look more formally at the process
of simplifying running times and other
measures of complexity.

EECS 310109/09/17 49

Asymptotic analysis

• Goal: to simplify analysis of running time by getting
rid of ”details”, which may be affected by specific

implementation and hardware
– like “rounding”: 1,000,001  1,000,000

– 3n2  n2

• Capturing the essence: how the running time of an
algorithm increases with the size of the input in the
limit.
– Asymptotically more efficient algorithms are best

for all but small inputs

EECS 310109/09/17 50

Asymptotic notation

• The “big-Oh” O-Notation
– asymptotic upper bound

– f(n)  O(g(n)), if there exists
constants c and n0, s.t. f(n)  c
g(n) for n  n0

– f(n) and g(n) are functions over
non-negative integers

• Used for worst-case analysis

)(nf
()c g n

0n Input Size

R
un

ni
ng

 T
im

e

EECS 310109/09/17 51

• The “big-Omega” Notation
– asymptotic lower bound
– f(n)  (g(n)) if there exists

constants c and n0, s.t. c g(n) 
f(n) for n  n0

• Used to describe best-case
running times or lower
bounds of algorithmic
problems
– E.g., lower-bound of searching

in an unsorted array is (n).

Input Size

R
un

ni
ng

 T
im

e

)(nf
()c g n

0n

Asymptotic notation – contd.

EECS 310109/09/17 52

Asymptotic notation – contd.

• Simple Rule: Drop lower order terms and
constant factors.
– 50 n log n  O(n log n)

– 7n - 3  O(n)

– 8n2 log n + 5n2 + n  O(n2 log n)

• Note: Even though 50 n log n  O(n5), we
usually try to express a O() expression using
as small an order as possible

EECS 310109/09/17 53

• The “big-Theta” Notation
– asymptoticly tight bound

– f(n)  (g(n)) if there exists
constants c1, c2, and n0, s.t. c1
g(n)  f(n)  c2 g(n) for n  n0

• f(n)  (g(n)) if and only if f(n)
 (g(n)) and f(n)  (g(n))

• O(f(n)) is often misused
instead of (f(n))

Input Size

R
un

ni
ng

 T
im

e

)(nf

0n

Asymptotic notation – contd.

)(ngc 2

)(ngc 1

EECS 310109/09/17 54

Asymptotic notation – contd.

• Two more asymptotic notations
– "Little-Oh" notation f(n)=o(g(n))

non-tight analogue of Big-Oh

• For every c, there should exist n0 , s.t. f(n)  c g(n)
for n  n0

• Used for comparisons of running times.

 If f(n)  o(g(n)), it is said that g(n) dominates f(n).

• More useful defn:

– "Little-omega" notation f(n)  (g(n))
non-tight analogue of Big-Omega

 f(n)
lim ----- = 0
n g(n)

EECS 310109/09/17 55

Asymptotic notation – contd.

• (VERY CRUDE) Analogy with real numbers
– f(n) = O(g(n))  f g
– f(n) = (g(n))  f g
– f(n) = (g(n))  f g
– f(n) = o(g(n))  f g
– f(n) = (g(n))  f g

• Abuse of notation: f(n) = O(g(n)) actually
means f(n) O(g(n)).

EECS 310109/09/17 56

Points to ponder and lessons

Common “colloquial” uses:
(1) – constant.
n(1) – polynomial

 2(n) – exponential

• When is asymptotic analysis useful?
• When is it NOT useful?

Many, many abuses of asymptotic notation in Computer
Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!
n(1)  (n1)

2(n)  (2n)

EECS 310109/09/17 57

Comparison of Running Times

Running
Time

Maximum problem size (n)

1 second 1 minute 1 hour

400n 2500 150000 9000000

20n log n 4096 166666 7826087

2n2 707 5477 42426

n4 31 88 244

2n 19 25 31

EECS 310109/09/17 58

Classifying functions

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

EECS 310109/09/17 59

Hierarchy of functions

Functions

Poly L
og arith m

ic

Poly nom
ial

E
xpo nent ial

E
xp

D
oub le E

xp

C
ons tant

 (log n)5 n5 25n5 2
n5 25n

2

O
the rs

2n log(n)

EECS 310109/09/17 60

Classifying Polynomials

Polynomial

L
inear

Q
uad ratic

C
ubi c

?

5n25n 5n3 5n4

O
the rs

5n3 log7(n)

Dominant term is of the form nc

EECS 310109/09/17 61

Logarithmic functions

• log10n = # digits to write n

• log2n = # bits to write n

 = 3.32 log10n

• log(n1000) = 1000 log(n)

Differ only by a
multiplicative
constant.

(log n)5 = log5 n

Poly Logarithmic (a.k.a. polylog)

EECS 310109/09/17 62

Crucial asymptotic facts

Logarithmic << Polynomial
 log1000 n << n0.001 For sufficiently large n

Linear << Quadratic
 10000 n << 0.0001 n2 For sufficiently large n

Polynomial << Exponential
 n1000 << 20.001 n For sufficiently large n

EECS 310109/09/17 63

Are constant functions constant?

• 5
• 1,000,000,000,000
• 0.0000000000001
• -5
• 0
• 8 + sin(n)

Yes
Yes
Yes
No

No
Yes

Lie in between

7

9

The running time of the algorithm is a “constant”
It does not depend significantly

on the size of the input.

Write θ(1).

EECS 310109/09/17 64

Polynomial Functions

Quadratic
• n2

• 0.001 n2

• 1000 n2

• 5n2 + 3000n + 2log n

Polynomial
•nc

• n0.0001

• n10000

• 5n2 + 8n + 2log n
• 5n2 log n
• 5n2.5

Lie in between

Lie in between

EECS 310109/09/17 65

Exponential functions

• 2n

• 20.0001 n

• 210000 n

• 8n

• 2n / n100
•2n · n100

= 23n

> 20.5n

< 22n

 20.5n > n100

2n = 20.5n · 20.5n > n100 · 20.5n

 2n / n100 > 20.5n

EECS 310109/09/17 66

Proving asymptotic expressions

Use definitions!

e.g. f(n) = 3n2 + 7n + 8 = θ(n2)
f(n)  (g(n)) if there exists constants c1, c2, and n0, s.t.
c1 g(n)  f(n)  c2 g(n) for n  n0

Here g(n) = n2
One direction (f(n) = (g(n)) is easy
c1 g(n)  f(n) holds for c1 = 3 and n  0

The other direction (f(n) = (g(n)) needs more care
f(n)  c2 g(n) holds for c2 = 18 and n  1 (CHECK!)

So n0 = 1

EECS 310109/09/17 67

Proving asymptotic expressions – contd.

Caveats!
1. constants c1, c2 MUST BE POSITIVE .
2. Could have chosen c2 = 3 + for any . WHY?

-- because 7n + 8 n2 for n  n0 for some sufficiently
large n0. Usually, the smaller the you choose, the
harder it is to findn0. So choosing a large is easier

3. Order of quantifiers
c1 c2 n0  n  n0, c1g(n)  f(n)  c2g(n)
vs
n0  n  n0 c1 c2, c1g(n)  f(n)  c2g(n)
-- allows a different c1 and c2 for each n. Can choose
c2 = 1/n!! So we can “prove” n3 =  (n2).

EECS 310109/09/17 68

Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have
different properties, grow much slower; mathematically
natural distinction.

Practical reasons
 1. almost every algorithm ever designed and every
algorithm considered practical are very low degree
polynomials with reasonable constants.
 2. a large class of natural, practical problems seem to
allow only exponential time algorithms. Most experts
believe that there do not exist any polynomial time
algorithms for any of these; i.e. P  NP.

	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

