
EECS 310109/09/17 1

Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: MW 4:00 – 5:30 PM, DB 0001
Tutorials: Th 4:00 – 5:30 PM, DB 0001

Office hours (LAS 3043): Wed 2-3:30 pm, Thu 3-4 pm, or
by appointment.

TA: TBA
Textbook: Cormen, Leiserson, Rivest, Stein.
 Introduction to Algorithms (3nd Edition)

Note: Some slides in this lecture are adopted from Jeff Edmonds’
slides.

EECS 3101: Introduction to the Design and
Analysis of Algorithms

EECS 310109/09/17 2

Described in more detail on webpage
http://www.cse.yorku.ca/course/3101

Grading:
Tests: 3 X 10%
Final: 50%
HW: 20% (Around 5 assignments)

Notes:
1. All assignments are individual.

Topics: Listed on webpage.

EECS 3101: Administrivia

EECS 310109/09/17 3

EECS 3101: More administrivia

Plagiarism: Will be dealt with very strictly. Read the detailed
policies on the webpage.

Solutions, other handouts: in /cs/course/3101

Grades: will be on ePost [you need a cse account for this].

Slides: Will usually be on the web the morning of the class.
The slides are for MY convenience and for helping you
recollect the material covered. They are not a
substitute for, or a comprehensive summary of, the
book.

Webpage: All announcements/handouts will be published
on the webpage -- check often for updates)

EECS 310109/09/17 4

EECS 3101: resources

• We will follow the textbook closely.

• There are more resources than you can possibly read
– including books, lecture slides and notes, online
texts, video lectures, assignments.

• Jeff Edmonds’ (www.cse.yorku.ca/~jeff) textbook has
many, many worked examples.

• Andy Mirzaian (http://www.cse.yorku.ca/~andy) has
very good notes and slides for this course

• The downloadable text by Parberry on Problems in
Algorithms (http://www.eng.unt.edu/ian/books/free/) is
an invaluable resource for testing your understanding

http://www.cse.yorku.ca/~jeff
http://www.cse.yorku.ca/~andy
http://www.eng.unt.edu/ian/books/free/

EECS 310109/09/17 5

Recommended strategy

• Practice instead of reading.
• Try to get as much as possible from the lectures.
• Try to listen more and write less in class.
• If you need help, get in touch with me early.

• If at all possible, try to come to the class with a fresh
mind.

• Keep the big picture in mind. ALWAYS.

• If you like challenging problems, and/or to improve
your problem solving ability, try programming contest
problems. http://www.cse.yorku.ca/acm

http://www.cse.yorku.ca/acm

EECS 310109/09/17 6

The Big Picture for EECS 3101

• The design and analysis of algorithms is a
FOUNDATIONAL skill -- needed in almost every field
in Computer Science and Engineering.

• Programming and algorithm design go hand in hand.

• Coming up with a solution to a problem is not of
much use, if you cannot argue that the solution is
– Correct, and
– Efficient

EECS 310109/09/17 7

Imagine - 0

• You take up a job at a bank. Your group leader defines
the problem you need to solve. Your job is to design
an algorithm for a financial application that you did not
encounter in your classes.

• How do you go about this task?

Designing algorithms – knowledge of paradigms.

EECS 310109/09/17 8

Imagine - 1

for j=2 to length(A)
 do key=A[j]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i]
 i--
 A[i+1]:=key

for j=2 to length(A)
 do key=A[j]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i]
 i--
 A[i+1]:=key

You want your team to
implement your idea – one
of them brings you this
code and argues that
anyone should see that
this sorts an array of
numbers correctly.

How can you be sure?

Correctness proofs – reasoning about algorithms

EECS 310109/09/17 9

Imagine - 2

• Two members of your team have designed alternative
solutions to the problem you wanted them to solve.
Your job is to select the better solution and reward the
designer. There are serious consequences for the
company as well for the designer.

Efficiency of algorithms – algorithm
analysis

EECS 310109/09/17 10

Imagine - 3

• Your boss asks you to solve a problem – the best
algorithm you can come up with is very slow. He
wants to know why you cannot do better.

Intractability : reasoning about problems

EECS 310109/09/17 11

Previous courses (1012,1020,2030, maybe 2011):

Given a problem:

 1. Figure out an algorithm.
 2. Code it, debug, test with “good” inputs.
 3. Some idea of running time, asymptotic notation.
 4. Study some well known algorithms:
 e.g. QuickSort, Prim(MST), Dijkstra’s algorithm
 5. Possibly: some idea of lower bounds.

Primary Objectives

EECS 310109/09/17 12

Problem-solving, Reasoning about ALGORITHMS

 1. Design of algorithms -- Some design paradigms.
 Divide-and-Conquer, Greedy, Dynamic
 Programming
 2. Very simple data structures

 Heaps

 3. Correctness proofs.
 Loop invariants
 3. Efficiency analysis.

 4. Comparison of algorithms (Better? Best?)

Primary objectives – EECS 3101

Machine-independent

Rigorous

EECS 310109/09/17 13

Reasoning about PROBLEMS:

 1. Lower bounds.
 “Is your algorithm the best possible?”

 “No comparison-based sorting algorithm can
 have running time better than (n log n)”.

 2. Intractability: “The problem seems to be hard – is
 it provably intractable?”

 3. Complexity classes.
 “Are there inherently hard problems?”

 P vs NP

Primary objectives – EECS 3101, continued

EECS 310109/09/17 14

A new way of thinking -- abstracting out the algorithmic
problem(s):

-- Extract the algorithmic problem and ignore the
“irrelevant” details

-- Focuses your thinking, more efficient problem solving

-- Programming contest problems teach this skill more
effectively than exercises in algorithms texts.

Secondary objectives

EECS 310109/09/17 15

1. Needed for correctness proofs
Pre-condition – post-condition framework; similar ideas
 used in program verification, Computer-aided design.

2. Needed for performance analysis
 Computation of running time

Specific topics
1. (Very) elementary logic.
2. Simple proof techniques: Induction, proof by contradiction
3. (Occasionally) Elementary calculus.
4. Summation of series.
5. Simple counting techniques.
6. Elementary graph theory

Role of mathematics

EECS 310109/09/17 16

1. Fact: Algorithms are always crucial
 Applications:Computational Biology, Genomics
 Data compression
 Indexing and search engines
 Cryptography
 Web servers: placement, load balancing, mirroring
 Optimization (Linear programming, Integer Programming)

2. Fact: Real programmers may not need algorithms……
but architects do!

3. Much more important fact: you must be able to
REASON about algorithms designed by you and
others. E.g., convincingly argue “my algorithm is correct”,
“my algorithm is fast”, “my algorithm is better than the existing

one”, “my algorithm is the best possible”, “our competitor cannot

possibly have a fast algorithm for this problem”,…

Why you should learn algorithms,
Or, Why this is a core course.

“Big data”

EECS 310109/09/17 17

1. Sorting a set of numbers (seen before)
2. Finding minimal spanning trees (seen before)
3. Matrix multiplication – compute A1A2A3A4….An

 using the fewest number of multiplications
 e.g.: A1 = 20 x 30, A2 = 30 x 60, A3 = 60 x 40,

 (A1 A2) A3 => 20x 30 x 60 + 20 x 60 x 40 = 84000

 A1 (A2 A3) => 20x 30 x 40 + 30 x 60 x 40 = 96000
4. Traveling Salesman Problem: Find the minimum weight

cycle in an weighted undirected graph which visits each
vertex exactly once and returns to the starting vertex

 Brute force: find all possible permutations of the
vertices and compute cycle costs in each case. Find
the maximum. Q: Can we do better?

Some examples

EECS 310109/09/17 18

Pseudocode

• Machine/language independent statements.
• Very simple commands: assignment, equality tests,

branch statements, for/while loops, function calls.
• No objects/classes (usually).

• Comments, just like in real programs.

• Should be at a level that can be translated into a
program very easily.

• As precise as programs, without the syntax
headaches

• My notation can vary slightly from the book.

You can use pseudocode, English or a combination.

EECS 310109/09/17 19

Reasoning about algorithms

Next:

EECS 310109/09/17 20

1. I/O specs: Needed for correctness proofs, performance
analysis.

 E.g. for sorting:
 INPUT: A[1..n] - an array of integers
 OUTPUT: a permutation B of A such that
 B[1] B[2] …. B[n]

2. CORRECTNESS: The algorithm satisfies the output
specs for EVERY valid input.

3. ANALYSIS: Compute the performance of the algorithm,
e.g., in terms of running time

Reasoning (formally) about algorithms

EECS 310109/09/17 21

Factors affecting algorithm performance

Importance of platform
• Hardware matters (memory hierarchy, processor

speed and architecture, network bandwidth, disk
speed,…..)

• Assembly language matters
• OS matters

• Programming language matters

Importance of input instance

Some instances are “easier” (algorithm dependent!)

EECS 310109/09/17 22

 • Measures of efficiency:
–Running time
–Space used

– others, e.g., number of cache misses, disk
accesses, network accesses,….

• Efficiency as a function of input size (NOT value!)

–Number of data elements (numbers, points)
–Number of bits in an input number

 e.g. Find the factors of a number n,

 Determine if an integer n is prime

• Machine Model What machine do we assume? Intel?
Motorola? i7? Atom? GPU?

Analysis of Algorithms

EECS 310109/09/17 23

What is a machine-independent model?

• Need a generic model that models (approximately) all
machines

• Modern computers are incredibly complex.
• Modeling the memory hierarchy and network

connectivity generically is very difficult
• All modern computers are “similar” in that they

provide the same basic operations.

• Most general-purpose processors today have at most
eight processors or “cores”. The vast majority have
one or two or four. GPU’s have hundreds or
thousands.

EECS 310109/09/17 24

The RAM model

• Generic abstraction of sequential computers
• RAM assumptions:

– Instructions (each taking constant time), we usually
choose one type of instruction as a characteristic
operation that is counted:

• Arithmetic (add, subtract, multiply, etc.)

• Data movement (assign)

• Control (branch, subroutine call, return)

• Comparison
– Data types – integers, characters, and floats
– Ignores memory hierarchy, network!

EECS 310109/09/17 25

Can we compute the running time on a RAM?

• Do we know the speed of this generic machine?
• If we did, will that say anything about the running time

of the same program on a real machine?
• What simplifying assumptions can we make?

EECS 310109/09/17 26

Idea: efficiency as a function of input size

• Want to make statements like, “the running time of an
algorithm grows linearly with input size”.

• Captures the nature of growth of running times, NOT
actual values

• Very useful for studying the behavior of algorithms for
LARGE inputs

• Aptly named Asymptotic Analysis

EECS 310109/09/17 27

 Consider the problem of factoring an integer n

Note: Public key cryptosystems depend critically on
hardness of factoring – if you have a fast algorithm to
factor integers, most e-commerce sites will become
insecure!!

Trivial algorithm: Divide by 1,2,…, n/2 (n/2 divisions)
 aside: think of an improved algorithm

Impact of input representation

Representation affects efficiency expression:
Let input size = S.

Unary: 1111…..1 (n times) -- S/2 multiplications (linear)
Binary: log2 n bits -- 2S-1 multiplications (exponential)
Decimal: log10 n digits -- 10S-1/2 multiplications (exponential)

EECS 310109/09/17 28

Q1. Find the max of n numbers (stored in array A)
 Formal specs:
 INPUT: A[1..n] - an array of integers
 OUTPUT: an element m of A such that A[j] m,
 1 j length(A)

 Find-max (A)
 1. max A[1] How many comparisons?
 2. for j 2 to length(A)
 3. do if (max < A[j])
 4. max A[j]
 5. return max

Q2. Can you think of another algorithm? Take a minute….
 How many comparisons does it take?

A simple example

EECS 3101

Aside

• How many nodes does a binary tree with n leaves
have?

09/09/17 29

EECS 3101

Finding the maximum – contd.

• Proposition: Every full binary tree with n leaves has
n-1 internal nodes.

 Proof: done on the board.

• Corollary: Any “tournament algorithm” to find the
maximum uses n-1 comparisons, as long it uses
each element exactly once in comparisons.

• Later: Every correct algorithm must use at least n-1
comparisons (this is an example of a lower bound)

09/09/17 30

EECS 310109/09/17 31

Analysis of Find-max

Find-max (A)
 1. max A[1]
 2. for j 2 to length(A)
 3. do if (max < A[j])
 4. max A[j]
 5. return max

cost
c1

c2

c3

c4

c5

times
1
n
n-1
0kn-1
1

 COUNT the number of cycles (running time) as a
function of the input size

Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3)n
Q: What are the values of ci?

EECS 310109/09/17 32

Best/Worst/Average Case Analysis

• Best case: A[1] is the largest element.
• Worst case: elements are sorted in increasing order
• Average case: ? Depends on the input characteristics

Q: What do we use?

A: Worst case or Average-case is usually used:
– Worst-case is an upper-bound; in certain

application domains (e.g., air traffic control,
surgery) knowing the worst-case time complexity is
of crucial importance

– Finding the average case can be very difficult;
needs knowledge of input distribution.

– Best-case is not very useful.

EECS 310109/09/17 33

Best/Worst/Average Case (2)
– For a specific size of input n, investigate running

times for different input instances:

1n

2n

3n

4n

5n

6n

EECS 310109/09/17 34

Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

best-case

average-case

worst-case

EECS 310109/09/17 35

Asymptotic notation : Intuition

Running time bound: c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
What are the values of ci? machine-dependent

A simpler expression: c6 + c7n [still complex].

Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there
 exist constants c8, c9 such that c8n c6 + c7n c9n,
 then we say that the running time is (n).

 Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?
A: Assume we are interested in large n – cleaner

theory, usually realistic. BUT, remember the
assumption when interpreting results!

EECS 310109/09/17 36

What does asymptotic analysis not predict?

• Exact run times
• Comparison for small instances
• Small differences in performance

EECS 310109/09/17 37

1. Covered basics of algorithm analysis (Ch. 1 of the text).
2. Next: Another example of algorithm analysis (Ch 2).

More about asymptotic notation (Ch. 3).

So far…

EECS 310109/09/17 38

Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is:
1. O() is used for upper bounds “grows slower than”
2. () used for lower bounds “grows faster than”
3. () used for denoting matching upper and lower

bounds. “grows as fast as”
 These are bounds on running time, not for the problem

The thumbrules for getting the running time are
1. Throw away all terms other than the most significant

one -- Calculus may be needed
 e.g.: which is greater: n log n or n1.001 ?
2. Throw away the constant factor.
3. The expression is () of whatever’s left.
 Asymptotic optimality – expression inside () best possible.

EECS 310109/09/17 39

INPUT: A[1..n] - an array of integers, k, 1 k length(A)
OUTPUT: an element m of A such that m is the kth largest element in

A

Brute Force: Find the max, remove it. Repeat k-1 times. Find max.

Q: How good is this algorithm?
A: Depends on k! Can show that the running time is (nk).

 If k=1, asymptotically optimal.
 Also true for any constant k.
 If k = log n, running time is (n log n). Is this good?
 If k = n/2 (MEDIAN), running time is (n2).
 Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES!

A Harder Problem

Think for a minute

EECS 310109/09/17 40

 INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 k 2m-1.

 OUTPUT: a number j, 0 j 2m-1, such that j is not contained
in the input.

 Brute Force 1: Sort the numbers.
 Analysis: (n log n) time, (n log n) space.

 Brute Force 2: Use a table of size n, “tick off” each
number as it is read.

 Analysis: (n) time, (n) space.

 Q: Can the running time be improved? No (why?)
 Q: Can the space complexity be improved? YES!

Space complexity

Think for a minute

EECS 310109/09/17 41

 INPUT: n distinct integers such that n = 2m-1, each integer k
satisfies 0 k 2m-1.

 OUTPUT: a number j, 0 j 2m-1, such that j is not contained
in the input.

 Observation:

 000 Keep a running bitwise sum (XOR) of the
 001 inputs. The final sum is the integer
 010 missing.
 011
 100 Q: How do we prove this?
 101
 110
 + 111

 000

Space complexity – contd.

EECS 310109/09/17 42

1. Is it similar/identical/equivalent to an existing problem?
2. Has the problem been solved?
3. If a solution exists, is the solution the best possible?
 May be a hard question :
 Can answer NO by presenting a better algorithm.
 To answer YES need to prove that NO algorithm can

 do better!
 How do you reason about all possible algorithms?
 (there is an infinite set of correct algorithms)

4. If no solution exists, and it seems hard to design an

efficient algorithm, is it intractable?

Aside: When you see a new problem, ask…

EECS 310109/09/17 43

Analyzing the running time of a simple, familiar sorting
algorithm.

Next:

EECS 310109/09/17 44

 “We maintain a subset of elements sorted within a list.
The remaining elements are off to the side somewhere.
Initially, think of the first element in the array as a
sorted list of length one. One at a time, we take one of
the elements that is off to the side and we insert it into
the sorted list where it belongs. This gives a sorted list
that is one element longer than it was before. When the
last element has been inserted, the array is completely
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Analysis example: Insertion sort

EECS 310109/09/17 45

Insertion sort: pseudocode

for j=2 to length(A)
 do key=A[j]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i]
 i--
 A[i+1]:=key

for j=2 to length(A)
 do key=A[j]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i]
 i--
 A[i+1]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

We will prove this algorithm correct when we study writing
correctness proofs

EECS 310109/09/17 46

Analysis of Insertion Sort

for j2 to n
 do keyA[j]
 Insert A[j] into the sorted
sequence A[1..j-1]
 ij-1
 while i>0 and A[i]>key
 do A[i+1]A[i]
 i i-1
 A[i+1] key

cost
c1

c2

0

c3

c4

c5

c6

c7

times
n
n-1
n-1

n-1

n-1

2

n

jj
t

=å
2
(1)

n

jj
t

=
-å

2
(1)

n

jj
t

=
-å

Let’s compute the running time as a function of the
input size

EECS 310109/09/17 47

Analysis of Insertion Sort – contd.

• Best case: elements already sorted tj=1, running
time = (n), i.e., linear time.

• Worst case: elements are sorted in inverse order
 tj=j, running time = (n2), i.e., quadratic time

• Average case: tj=j/2, running time = (n2), i.e.,
quadratic time

• We can see that insertion sort has a worst case
running time An2 + Bn + C, where A = (c5+c6+c7)/2
etc.

• Q1: How useful are the details in this result?
• Q2: How can we simplify the expression?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

