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Instructor: Suprakash Datta (datta[at]cse.yorku.ca) ext 77875

Lectures: MW 4:00 – 5:30 PM, DB 0001
Tutorials: Th 4:00 – 5:30 PM, DB 0001

Office hours (LAS 3043): Wed 2-3:30 pm, Thu 3-4 pm, or 
by appointment.

TA: TBA
Textbook: Cormen, Leiserson, Rivest, Stein.
                 Introduction to Algorithms (3nd Edition)

Note: Some slides in this lecture are adopted from Jeff Edmonds’ 
slides.

EECS 3101: Introduction to the Design and 
Analysis of Algorithms
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Described in more detail on webpage 
http://www.cse.yorku.ca/course/3101

                 
Grading:  
Tests: 3  X 10%
Final: 50% 
HW: 20% (Around 5 assignments)

Notes:
1. All assignments are individual.

Topics: Listed on webpage. 

EECS 3101: Administrivia



EECS 310109/09/17 3

EECS 3101: More administrivia

Plagiarism: Will be dealt with very strictly. Read the detailed 
policies on the webpage.

Solutions, other handouts: in /cs/course/3101

Grades: will be on ePost [you need a cse account for this].

Slides: Will usually be on the web the morning of the class. 
The slides are for MY convenience and for helping you 
recollect the material covered. They are not a 
substitute for, or a comprehensive summary of, the 
book.

Webpage: All announcements/handouts will be published 
on the webpage -- check often for updates)
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EECS 3101: resources

• We will follow the textbook closely.

• There are more resources than you can possibly read 
– including books, lecture slides and notes, online 
texts, video lectures, assignments.

• Jeff Edmonds’ (www.cse.yorku.ca/~jeff) textbook has  
many, many worked examples.

• Andy Mirzaian (http://www.cse.yorku.ca/~andy) has 
very good notes and slides for this course

• The downloadable text by Parberry on Problems in 
Algorithms (http://www.eng.unt.edu/ian/books/free/) is 
an invaluable resource for testing your understanding

http://www.cse.yorku.ca/~jeff
http://www.cse.yorku.ca/~andy
http://www.eng.unt.edu/ian/books/free/
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Recommended strategy

• Practice instead of reading.
• Try to get as much as possible from the lectures.
• Try to listen more and write less in class.
• If you need help, get in touch with me early.

• If at all possible, try to come to the class with a fresh 
mind.

• Keep the big picture in mind. ALWAYS.

• If you like challenging problems, and/or to improve 
your problem solving ability, try programming contest 
problems. http://www.cse.yorku.ca/acm

http://www.cse.yorku.ca/acm
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The Big Picture for EECS 3101 

• The design and analysis of algorithms is a 
FOUNDATIONAL skill -- needed in almost every field 
in Computer Science and Engineering.

• Programming and algorithm design go hand in hand.

• Coming up with a solution to a problem is not of 
much use, if you cannot argue that the solution is 
– Correct, and
– Efficient
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Imagine - 0

• You take up a job at a bank. Your group leader defines 
the problem you need to solve. Your job is to design 
an algorithm for a financial application that you did not 
encounter in your classes. 

• How do you go about this task?

Designing algorithms – knowledge of paradigms.
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Imagine - 1

for j=2 to length(A)
   do key=A[j]
      i=j-1
      while i>0 and A[i]>key
        do A[i+1]=A[i]
           i--
      A[i+1]:=key

for j=2 to length(A)
   do key=A[j]
      i=j-1
      while i>0 and A[i]>key
        do A[i+1]=A[i]
           i--
      A[i+1]:=key

You want your team to
implement your idea – one
of them brings you this 
code and argues that 
anyone should see that 
this sorts an array of 
numbers correctly. 

How can you be sure?

Correctness proofs – reasoning about algorithms
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Imagine - 2

• Two members of your team have designed alternative 
solutions to the problem you wanted them to solve. 
Your job is to select the better solution and reward the 
designer. There are serious consequences for the 
company as well for the designer.

Efficiency of algorithms – algorithm 
analysis
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Imagine - 3

• Your boss asks you to solve a problem – the best 
algorithm you can come up with is very slow. He 
wants to know why you cannot do better. 

Intractability : reasoning about problems
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Previous courses (1012,1020,2030, maybe 2011):  

Given a problem:

   1. Figure out an algorithm.
   2. Code it, debug, test with “good” inputs.
   3. Some idea of running time, asymptotic notation.
   4. Study some well known algorithms:
            e.g. QuickSort, Prim(MST), Dijkstra’s algorithm
   5. Possibly: some idea of lower bounds.

Primary Objectives
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Problem-solving, Reasoning about ALGORITHMS

   1. Design of algorithms -- Some design paradigms.
               Divide-and-Conquer, Greedy, Dynamic               
                          Programming 
   2. Very simple data structures

    Heaps

   3. Correctness proofs.
                  Loop invariants
   3. Efficiency analysis.

   4. Comparison of algorithms  (Better? Best?)

Primary objectives – EECS 3101

Machine-independent

Rigorous
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Reasoning about PROBLEMS: 

        1. Lower bounds.
 “Is your algorithm the best possible?”

            “No comparison-based sorting algorithm can         
  have running time better than (n log n)”.

 
        2. Intractability: “The problem seems to be hard – is  
        it provably intractable?”

        3. Complexity classes.
 “Are there inherently hard problems?”

             P vs NP 

Primary objectives – EECS 3101, continued
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A new way of thinking -- abstracting out the algorithmic 
problem(s): 
     
-- Extract the algorithmic problem and ignore the 
“irrelevant” details
         
-- Focuses your thinking, more efficient problem solving

-- Programming contest problems teach this skill more 
effectively than exercises in algorithms texts.

Secondary objectives
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1. Needed for correctness proofs
Pre-condition – post-condition framework; similar ideas       
     used in program verification, Computer-aided design. 

2. Needed for performance analysis
  Computation of running time

Specific topics        
1. (Very) elementary logic.
2. Simple proof techniques:  Induction, proof by contradiction
3. (Occasionally) Elementary calculus.
4. Summation of series.
5. Simple counting techniques.
6.  Elementary graph theory

Role of mathematics
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1. Fact: Algorithms are always crucial
     Applications:Computational Biology, Genomics 
                              Data compression
                              Indexing and search engines
                              Cryptography
                              Web servers: placement, load balancing, mirroring
                              Optimization (Linear programming, Integer Programming)

2. Fact: Real programmers may not need algorithms…… 
but architects do! 

3. Much more important fact: you must be able to 
REASON about algorithms designed by you and 
others. E.g., convincingly argue “my algorithm is correct”, 
“my algorithm is fast”, “my algorithm is better than the existing 

one”, “my algorithm is the best possible”, “our competitor cannot 

possibly have a fast algorithm for this problem”,…  

Why you should learn algorithms, 
Or, Why this is a core course.

“Big data”
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1. Sorting a set of numbers (seen before)
2. Finding minimal spanning trees (seen before)
3. Matrix multiplication – compute A1A2A3A4….An

    using the fewest number of multiplications
    e.g.: A1 = 20 x 30,  A2 = 30 x 60, A3 = 60 x 40, 

    (A1  A2 ) A3  => 20x 30 x 60 + 20 x 60 x 40 = 84000

      A1 ( A2  A3 ) => 20x 30 x 40 + 30 x 60 x 40 = 96000
4. Traveling Salesman Problem: Find the minimum weight 

cycle in an weighted undirected graph which visits each 
vertex exactly once and returns to the starting vertex

     Brute force: find all possible permutations of the 
vertices and compute cycle costs in each case. Find 
the maximum.      Q: Can we do better?

Some examples



EECS 310109/09/17 18

Pseudocode

• Machine/language independent statements.
• Very simple commands: assignment, equality tests, 

branch statements, for/while loops, function calls.
• No objects/classes (usually).

• Comments, just like in real programs.

• Should be at a level that can be translated into a 
program very easily.

• As precise as programs, without the syntax 
headaches

• My notation can vary slightly from the book.

You can use pseudocode, English or a combination.
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Reasoning about algorithms
      

Next:
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1. I/O specs: Needed for correctness proofs, performance 
analysis. 

      E.g. for sorting:
      INPUT: A[1..n] - an array of integers
      OUTPUT: a permutation B of A such that 
                       B[1]  B[2]  ….  B[n]

2. CORRECTNESS: The algorithm satisfies the output 
specs for EVERY valid input.

3. ANALYSIS: Compute the performance of the algorithm, 
e.g., in terms of running time 

Reasoning (formally) about algorithms
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Factors affecting algorithm performance

Importance of platform
• Hardware matters (memory hierarchy, processor 

speed and architecture, network bandwidth, disk 
speed,…..)

• Assembly language matters
• OS matters

• Programming language matters

Importance of input instance

Some instances are “easier” (algorithm dependent!)
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    • Measures of efficiency:
–Running time
–Space used

– others, e.g., number of cache misses, disk 
accesses, network accesses,…. 

• Efficiency as a function of input size (NOT value!)

–Number of data elements (numbers, points)
–Number of bits in an input number 

  e.g. Find the factors of a number n,

         Determine if an integer n is prime

• Machine Model What machine do we assume? Intel? 
Motorola?  i7? Atom? GPU?

Analysis of Algorithms
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What is a machine-independent model?

• Need a generic model that models (approximately) all 
machines

• Modern computers are incredibly complex.
• Modeling the memory hierarchy and network 

connectivity generically is very difficult
• All modern computers are “similar” in that they 

provide the same basic operations. 

• Most general-purpose processors today have at most 
eight processors or “cores”. The vast majority have 
one or two or four. GPU’s have hundreds or 
thousands.
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The RAM model

• Generic abstraction of sequential computers
• RAM assumptions:

– Instructions (each taking constant time), we usually 
choose one type of instruction as a characteristic 
operation that is counted:

• Arithmetic (add, subtract, multiply, etc.)

• Data movement (assign)

• Control (branch, subroutine call, return)

• Comparison
– Data types – integers, characters, and floats 
– Ignores memory hierarchy, network!
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Can we compute the running time on a RAM?

• Do we know the speed of this generic machine?
• If we did, will that say anything about the running time 

of the same program on a real machine? 
• What simplifying assumptions can we make?
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Idea: efficiency as a function of input size

• Want to make statements like, “the running time of an 
algorithm grows linearly with input size”.  

• Captures the nature of growth of running times, NOT 
actual values

• Very useful for studying the behavior of algorithms for 
LARGE inputs

• Aptly named Asymptotic Analysis 
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    Consider the problem of factoring an integer n

Note: Public key cryptosystems depend critically on 
hardness of factoring – if you have a fast algorithm to 
factor integers, most e-commerce sites will become 
insecure!! 

Trivial algorithm: Divide by 1,2,…, n/2 (n/2 divisions)
                                aside: think of an improved algorithm

Impact of input representation

Representation affects efficiency expression:
Let input size = S.

Unary: 1111…..1 (n times)  -- S/2 multiplications (linear) 
Binary: log2 n bits  -- 2S-1 multiplications (exponential) 
Decimal: log10 n digits -- 10S-1/2 multiplications (exponential) 
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Q1. Find the max of n numbers (stored in array A) 
     Formal specs:
      INPUT: A[1..n] - an array of integers
      OUTPUT: an element m of A such that A[j]  m, 
                       1  j  length(A)

     Find-max (A)
      1. max  A[1]                              How many comparisons?
      2. for j  2 to length(A)
      3.    do if (max < A[j])
      4.             max  A[j]
      5. return max

Q2. Can you think of another algorithm? Take a minute….
              How many comparisons does it take?

A simple example
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Aside

• How many nodes does a binary tree with n leaves 
have?

09/09/17 29
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Finding the maximum – contd.

• Proposition: Every full binary tree with n leaves has 
n-1 internal nodes.

    Proof: done on the board.

• Corollary: Any “tournament algorithm” to find the 
maximum uses n-1 comparisons, as long it uses 
each element exactly once in comparisons.

• Later: Every correct algorithm must use at least n-1 
comparisons (this is an example of a lower bound) 

09/09/17 30
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Analysis of Find-max

Find-max (A)
      1. max  A[1]
      2. for j  2 to length(A)
      3.    do if (max < A[j])
      4.             max  A[j]
      5. return max

cost
c1

c2

c3

c4

c5

times
1
n
n-1
0kn-1
1

    COUNT the number of cycles (running time) as a 
function of the input size

Running time (upper bound): c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
Running time (lower bound): c1 + c5 – c3 – c4 + (c2 + c3 )n
Q: What are the values of ci?
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Best/Worst/Average Case Analysis

• Best case: A[1] is the largest element. 
• Worst case: elements are sorted in increasing order
• Average case: ? Depends on the input characteristics

Q: What do we use?

A: Worst case or Average-case is usually used:
– Worst-case is an upper-bound;  in certain 

application domains (e.g., air traffic control, 
surgery) knowing the worst-case time complexity is 
of crucial importance

– Finding the average case can be very difficult; 
needs knowledge of input distribution.

– Best-case is not very useful.
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Best/Worst/Average Case (2) 
– For a specific size of input n, investigate running 

times for different input instances:

1n

2n

3n

4n

5n

6n
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Best/Worst/Average Case (3)

For inputs of all sizes:

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 ti
m

e

1    2    3    4    5     6    7    8     9   10   11   12  …..

best-case

average-case

worst-case
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Asymptotic notation : Intuition

Running time bound: c1 + c5 – c3 – c4 + (c2 + c3 + c4)n
What are the values of ci? machine-dependent

A simpler expression: c6 + c7n [still complex]. 

Q: Can we throw away the lower order terms?
A: Yes, if we do not worry about constants, and there
     exist constants c8, c9 such that c8n  c6 + c7n  c9n,
     then we say that the running time is (n). 

     Need some mathematics to formalize this (LATER).

Q: Are we interested in small n or large?
A: Assume we are interested in large n – cleaner 

theory, usually realistic. BUT, remember the 
assumption when interpreting results!
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What does asymptotic analysis not predict?

• Exact run times
• Comparison for small instances
• Small differences in performance



EECS 310109/09/17 37

1. Covered basics of algorithm analysis (Ch. 1 of the text).
2. Next: Another example of algorithm analysis (Ch 2). 

More about asymptotic notation (Ch. 3).  

So far…
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Asymptotic notation - continued

Will do the relevant math later. For now, the intuition is: 
1. O() is used for upper bounds “grows slower than”
2. () used for lower bounds “grows faster than”
3. () used for denoting matching upper and lower 

bounds. “grows as fast as”
     These are bounds on running time, not for the problem

The thumbrules for getting the running time are
1. Throw away all terms other than the most significant 

one -- Calculus may be needed 
     e.g.: which is greater: n log n or n1.001 ?
2. Throw away the constant factor.
3. The expression is () of whatever’s left.
     Asymptotic optimality – expression inside () best possible.
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INPUT: A[1..n] - an array of integers, k, 1 k length(A)
OUTPUT: an element m of A such that m is the kth largest element in 

A

Brute Force: Find the max, remove it. Repeat k-1 times. Find max.

Q: How good is this algorithm?
A: Depends on k! Can show that the running time is (nk).

 If k=1, asymptotically optimal.
                 Also true for any constant k.
       If k = log n, running time is (n log n). Is this good?
       If k = n/2 (MEDIAN), running time is (n2).
                 Definitely bad! Can sort in O(n log n)!

Q: Is there a better algorithm? YES!

A Harder Problem

Think for a minute
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    INPUT: n distinct integers such that n = 2m-1, each integer k 
satisfies 0 k  2m-1. 

     OUTPUT: a number j, 0  j  2m-1, such that j is not contained 
in the input.

          
      Brute Force 1:  Sort the numbers.
      Analysis: (n log n) time, (n log n) space.

     Brute Force 2:  Use a table of size n, “tick off” each 
number as it is read.

      Analysis:  (n) time,  (n) space.

    Q: Can the running time be improved? No (why?)
    Q: Can the space complexity be improved? YES!

Space complexity

Think for a minute
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    INPUT: n distinct integers such that n = 2m-1, each integer k 
satisfies 0 k  2m-1. 

     OUTPUT: a number j, 0  j  2m-1, such that j is not contained 
in the input.      

     Observation:

      000                          Keep a running bitwise sum (XOR) of the 
      001                          inputs. The final sum is the integer 
      010                          missing.
      011
      100                          Q: How do we prove this?
      101
      110
   + 111
--------------

     000

Space complexity – contd.
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1. Is it similar/identical/equivalent to an existing problem?
2. Has the problem been solved?
3. If a solution exists, is the solution the best possible?  
     May be a hard question :
          Can answer NO by presenting a better algorithm.
          To answer YES need to prove that NO algorithm can 

          do better! 
           How do you reason about all possible algorithms?
           (there is an infinite set of correct algorithms)             

     
4. If no solution exists, and it seems hard to design an 

efficient algorithm, is it intractable?

Aside: When you see a new problem, ask…
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Analyzing the running time of a simple, familiar sorting 
algorithm.          

Next: 
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     “We maintain a subset of elements sorted within a list. 
The remaining elements are off to the side somewhere. 
Initially, think of the first element in the array as a 
sorted list of length one. One at a time, we take one of 
the elements that is off to the side and we insert it into 
the sorted list where it belongs. This gives a sorted list 
that is one element longer than it was before. When the 
last element has been inserted, the array is completely 
sorted.”

English descriptions:

- Easy, intuitive.
- Often imprecise, may leave out critical details.

Analysis example: Insertion sort
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Insertion sort: pseudocode

for j=2 to length(A)
   do key=A[j]
      i=j-1
      while i>0 and A[i]>key
        do A[i+1]=A[i]
           i--
      A[i+1]:=key

for j=2 to length(A)
   do key=A[j]
      i=j-1
      while i>0 and A[i]>key
        do A[i+1]=A[i]
           i--
      A[i+1]:=key

Can you understand
The algorithm?
I would not know
this is insertion sort!

Moral: document code!

We will prove this algorithm correct when we study writing
correctness proofs
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Analysis of Insertion Sort

for j2 to n
   do keyA[j]
      Insert A[j] into the sorted 
sequence A[1..j-1]
      ij-1
      while i>0 and A[i]>key
        do A[i+1]A[i]
           i  i-1
      A[i+1]  key

cost
c1

c2

0
 
c3

c4

c5

c6

c7

times
n
n-1
n-1

n-1

n-1

2

n

jj
t

=å
2
( 1)

n

jj
t

=
-å

2
( 1)

n

jj
t

=
-å

Let’s compute the running time as a function of the 
input size
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Analysis of Insertion Sort – contd.

• Best case: elements already sorted  tj=1, running 
time = (n), i.e., linear time. 

• Worst case: elements are sorted in inverse order 
 tj=j, running time = (n2), i.e., quadratic time

• Average case: tj=j/2, running time = (n2), i.e., 
quadratic time

• We can see that insertion sort has a worst case 
running time An2 + Bn + C, where  A = (c5+c6+c7)/2 
etc.

• Q1: How useful are the details in this result?
• Q2: How can we simplify the expression?
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