Next: Some mathematical tools

- Important to have the right tools
- Still, these are only tools; necessary but not sufficient to solve problems.
- We will cover some essential tools in this course for your repertoire.

A Quick Math Review

- Geometric progression
 - given an integer n_0 and a real number $0 \le a \ne 1$

$$\sum_{i=0}^{n} a^{i} = 1 + a + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

- geometric progressions exhibit exponential growth

Arithmetic progression

$$\sum_{i=0}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n^2 + n}{2}$$

Pictorial proofs of sums

EECS 3101

Review: Proof by Induction

- We want to show that property *P* is true for all integers *n* ≥ *n*₀
- **Basis**: prove that *P* is true for n_0
- **Inductive step:** prove that if *P* is true for all *k* such that $n_0 \le k \le n 1$ then *P* is also true for *n*

• Example
$$S(n) = \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$
 for $n \ge 1$

• Base case:
$$S(1) = \sum_{i=0}^{1} i = \frac{1(1+1)}{2}$$

Proof by Induction (2)

Inductive Step

$$S(k) = \sum_{i=0}^{k} i = \frac{k(k+1)}{2} \text{ for } 1 \le k \le n-1$$

$$S(n) = \sum_{i=0}^{n} i = \sum_{i=0}^{n-1} i + n = S(n-1) + n =$$

$$= (n-1)\frac{(n-1+1)}{2} + n = \frac{(n^2 - n + 2n)}{2} =$$

$$= \frac{n(n+1)}{2}$$

09/09/17

EECS 3101

Important thumbrules for sums

"addition made easy" – Jeff Edmonds. "Theta of last term" n Geometric like: $f(i) = 2^{\Omega(i)} \Rightarrow \overline{\Sigma} f(i) = \Theta(f(n))$ i=1 no of terms x last term Arithmetic like: i.f(i) = i $\Theta(1) \Rightarrow \Sigma$ f(i) = $\Theta(nf(n))$ i=1 Harmonic: $f(i) = 1/i \Rightarrow \sum_{i=1}^{n} f(i) = \Theta(\log n)$ i=1 "Theta of first term" Bounded tail: i.f(i) = $1/i^{\Theta(1)} \Rightarrow \sum_{i=1}^{n} f(i) = \Theta(1)$ i=1 Use as thumbrules only 09/09/17 103 ECS 3101

Later: Some standard techniques

We will get into these techniques as and when we need them. If you are interested, read Appendix A.

- Approximation with integrals :Derive, rather than memorize the formula; e.g $\Sigma 1/k.$
- Telescoping sum: $\sum 1/(k(k+1))$
- Split a sum: $\sum k/2^k$
- Approximate crudely from both sides: e.g. $\sum 2^k$
- Integrate and differentiate series: $\Sigma k x^k$