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Next: Some mathematical tools

• Important to have the right tools
• Still, these are only tools; necessary but not 

sufficient to solve problems.

• We will cover some essential tools in this 
course for your repertoire.
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A Quick Math Review 

• Geometric progression

– given an integer n0 and a real number 0< a  1

– geometric progressions exhibit exponential growth

• Arithmetic progression
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Pictorial proofs of sums
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Review: Proof by Induction

• We want to show that property P is true for all 
integers n  n0 

• Basis: prove that P is true for n0

• Inductive step: prove that if P is true for all k 

such that n0  k  n – 1 then P is also true for n

• Example

• Base case:
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Proof by Induction (2)
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• Inductive Step
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Important thumbrules for sums

”addition made easy” – Jeff Edmonds.

Geometric like: f(i) = 2(i)   f(i) = (f(n))

Arithmetic like: i.f(i) = i (1)   f(i) = (nf(n))

Harmonic: f(i) = 1/i   f(i) = (log n)

Bounded tail: i.f(i) = 1/i(1)   f(i) = (1)

Use as thumbrules only 
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“Theta of last term”

no of terms x last term

“Theta of first term”
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Later: Some standard techniques

We will get into these techniques as and when we need 
them. If you are interested, read Appendix A.

• Approximation with integrals :Derive, rather than 
memorize the formula; e.g 1/k.

• Telescoping sum: 1/(k(k+1))
• Split a sum: k/2k

• Approximate crudely from both sides: e.g. 2k

• Integrate and differentiate series: kxk
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