
17-11-27

1

Writing Shell Scripts ─ part 3

EECS 2031

1 27 November 2017

Debugging Tools

sh –v myscript arguments
l v: verbose
l displays each command it finds in the script as it
encounters it (before substitution).
l allows you to find which particular line in your code has
the syntax error. Displaying will stop at this point and the
script exits.

l Example:
sh -v show_shift a b c d e f

2

17-11-27

2

Debugging Tools (2)

sh –x myscript
l x: execute
l similar to –v, but displays a command only when it is
executed (before execution but after substitution).
l useful for debugging control structures (if, case, loops).

¡  if no control structures then x and v display the whole program.

l puts a plus sign (+) in front of any command that gets
processed (easier to read than –v).
l Examples:
sh -x show_shift a b c d e f
sh -x chkex ghost # compare with -v

3

Debugging Tools (3)

sh –xv myscript
l Both options may be used at the same time.

l To check variable substitutions.
l Example:
sh -xv show_shift a b c d e f

l To view the whole program and its execution.
l Example:
sh -xv chkex ghost

4

17-11-27

3

Debugging Tools (4)

sh –n myscript
l Reads the commands but does NOT execute them.
l Useful for “compiling” the script to detect syntax errors.
l Example uses:

¡ a good working script will modify/delete files.
¡ interactive input from user is required.
¡ very long scripts.

5

Shell Functions

l  Similar to shell scripts.
l  Stored in shell where it is defined (instead of in a file).
l  Executed within sh

¡ no child process spawned
l  Syntax:

function_name()
{
 commands
}

l  Allows structured shell scripts

6

17-11-27

4

Example
#!/bin/sh
function to sample how many users are logged on
log()
{
 echo “Users logged on:” >> users
 date >> users
 who >> users
 echo “-----------” >> users

}

taking first sample
log

taking second sample (30 min. later)
sleep 1800
log

7

Shell Functions (2)

l  Make sure a function does not
call itself causing an endless
loop.

% cat makeit
#!/bin/sh
…
sort()
{
 sort $* | more

}
…

l  Avoid using existing Unix
commands as function names.

l  Alternative fix (but not
recommended):

% cat makeit
#!/bin/sh
…
sort()
{
 /bin/sort $* | more

}
…

8

17-11-27

5

Changing Values of Positional
Parameters
l Positional parameters $1, $2, … normally

store command line arguments.

l Their values can be changed using set
command , for example, set `date`

l The new values are the output of date
command.

9

Example

% cat setparm
#!/bin/sh
echo "Hello, $1. You entered $# command line argument(s). Today's date is ..."
date
set `date`
echo There are now $# positional parameters. The new parameters are ...
echo \$1 = $1, \$2 = $2, \$3 = $3, \$4 = $4, \$5 = $5, \$6 = $6.

% setparm Amy Tony
Hello, Amy. You entered 2 command line argument(s). Today's date is ...
Sat Nov 27 11:55:52 EST 2010
There are now 6 positional parameters. The new parameters are ...
$1 = Sat, $2 = Nov, $3 = 27, $4 = 11:55:52, $5 = EST, $6 = 2010.

 10

17-11-27

6

Environment and Shell Variables

l  Standard UNIX variables are divided into 2 categories:
shell variables and environment variables.

l  Shell variables: apply only to the current instance of the
shell; used to set short-term working conditions.
¡ displayed using ‘set’ command.

l  Environment variables: set at login and are valid for the
duration of the session.
¡ displayed using ‘env’ command.

l  By convention,
¡ shell variables have lower case names.
¡ environment variables have UPPER case names

11

Environment and Shell Variables (2)

l  In general, environment and shell variables that have
“the same” name (apart from the case) are distinct and
independent, except for possibly having the same initial
values.

Exceptions:
l  When home, user and term are changed, HOME, USER

and TERM receive the same values.
l  But changing HOME, USER or TERM does not affect home,
user or term.

l  Changing PATH causes path to be changed and vice
versa.

12

17-11-27

7

Variable path
l  PATH and path specify directories to search for commands and

programs.
cd # move to home directory
countargs a b # in C2031/Lect_UNIX, so failed
echo $path
set path=($path C2031/Lect_UNIX)
echo $path
countargs a b # successful

l  To add a path permanently, add the line to your .cshrc file after
the list of other commands.

set path=($path .) # to avoid typing ./a.out

13

set Command Summary

l Displays shell variables
l Set variables (e.g., set path)
l Changing command-line arguments

¡ set `date`

14

17-11-27

8

break and continue

l  Interrupt loops (for, while, until)

l  break transfers control immediately to the statement
after the nearest done statement
¡ terminates execution of the current loop

l  continue transfers control immediately to the nearest
done statement
¡ brings execution back to the top of the loop

l  Same effects as in C.

15	

break and continue Example
#!/bin/sh
while true
do

echo “Entering ‘while’ loop ...”
echo “Choose 1 to exit loop.”
echo “Choose 2 to go to top of loop.”
echo -n “Enter choice: ”
read choice
if test $choice = 1
then
 break
fi
echo “Bypassing ‘break’.”

if test $choice = 2
then
 continue
fi
echo “Bypassing ‘continue’.”

done

echo “Exit ‘while’ loop.”

16

17-11-27

9

$* versus $@

l  $* and $@ are identical when not quoted:
¡ expand into the arguments
¡ blanks in arguments result in multiple arguments.

l  They are different when double-quoted:
¡ “$@” each argument is quoted as a separate string.
¡ “$*” all arguments are quoted as a single string.

17

$* versus $@ Example

% cat displayargs
#!/bin/sh
echo All the arguments are "$@".
countargs "$@"
echo All the arguments are "$*".
countargs "$*"

% cat countargs
#!/bin/sh
echo Number of arguments to countargs = $#

% sh -xv displayargs Mary Amy Tony

18

17-11-27

10

Next ...

l  Bitwise operators

l  Review

l  Reading for this lecture:
¡ Posted tutorial on standard UNIX variables

19

