
17-11-20

1

Shell Control Structures

EECS 2031

1 20 November 2017

Control Structures

l  if then else
l for
l while
l case (which)
l until

2

17-11-20

2

if Statement and test Command

l  Syntax:
if condition
then
 command(s)
elif condition_2
then
 command(s)
else
 command(s)
fi

l  Command test is often used in condition.

3

if – then – else Example

% cat if_else
#!/bin/sh
echo -n 'Enter string 1: '
read string1
echo -n 'Enter string 2: '
read string2
if test $string1 = $string2
then
 echo 'They match!'
else
 echo 'No match!'
fi

% if_else
Enter string 1: acd
Enter string 2: 123
No match!

% if_else
Enter string 1: 123
Enter string 2: 123
They match!

4	

17-11-20

3

test Command

5 ─e file file or directory exists

also returns false if
file or directory
does not exist

also returns true if
file or directory
does not exist

⇒ empty file

There must be a space
between ! and minus sign.

test Command (2)

l Parentheses can be used for grouping test conditions.

6

17-11-20

4

test Example 1

% cat check_file
#!/bin/sh
if test ! -s $1
then
 echo "File $1 is empty.“
 exit 1
else
 ls -l $1
fi

% touch z.txt

% check_file z.txt
File z.txt is empty.

7

test Example 2
% cat check_file
#!/bin/sh
if test $# -eq 0
then
 echo Usage: check_file file_name
 exit 1
fi
if test ! -s $1
then
 echo "File $1 is empty.“
 exit 1
else
 ls -l $1
fi

8

17-11-20

5

test Example 3

l  What is wrong with the following script?

% cat chkex2
#!/bin/sh
Check if a file is executable.
if test -x $1
then
 echo File $1 is executable.
else
 echo File $1 is not executable.
fi

9

test and Logical Operators
l  !, || and && as in C
l  Following is better version of test Example 3
%cat chkex
#!/bin/sh
if test -e $1 && test -x $1
then
 echo File $1 is executable.
elif test ! -e $1
then
 echo File $1 does not exist.
else
 echo File $1 is not executable.
fi

10

17-11-20

6

for Loops

for variable in list
do
 command(s)
done

l variable is a user-defined variable.
l list is a sequence of strings separated by
spaces.

11

for Loop Example 1

% cat fingr
#!/bin/sh
for name in $*
do
 finger $name
done

l Recall that $* stands for all command line
arguments the user enters.

12

17-11-20

7

for Loop Example 2

% cat fsize
#!/bin/sh
for i in $*
do
 echo "File $i: size `cat $i | wc –c` bytes"
done

% fsize chex chfile chfile2
File chex: size 86 bytes
File chfile: size 90 bytes
File chfile2: size 163 bytes

 13

for Loop Example 3

% cat rmread
#!/bin/sh
Remove the read permission for “others”
from all files in the working directory.

for i in *
do
 chmod o-r $i
 ls –l $i
done

17-11-20

8

for Loop Example 4

% cat prdir
#!/bin/sh
Display all c files in a directory
specified by argument 1.

for i in $1/*.c
do
 echo "======= $i ======"
 more $i
done

15

Arithmetic Operations Using expr
l  The shell is not intended for numerical work (use Java, C, or Perl

instead).
l  However, expr utility may be used for simple arithmetic operations

on integers.
l  expr is not a shell command but rather a UNIX utility.
l  To use expr in a shell script, enclose the expression with

backquotes.
l  Example:

#!/bin/sh
sum=`expr $1 + $2`
echo $sum

l  Note: spaces are required around the operator + (but not allowed
around the equal sign).

16

17-11-20

9

expr Example
% cat cntx
#!/bin/sh
Count the number of executable files in

the current working directory

count=0
for i in * # what if we replace * with $* ?
do
 if test -x $i
 then

 count=`expr $count + 1`
 ls -l $i

 fi
done
echo “There are $count executable files.”

17

while Loops

while condition
do
 command(s)
done

l Command test is often used in condition.
l Execute command(s)when condition is met.

18

17-11-20

10

while Loop Example (1)
% cat dargs
#!/bin/sh
Display the command line arguments, one per line.

count=1
argc=$#
while test $count -le $argc
do
 echo "Argument $count is: $1"
 count=`expr $count + 1`
 shift # shift arg 2 into arg 1 position
done

What happens if the while statement is as follows?

while test $count -le $# 19

Homework

l  What happens if in the above program we do not use
variable argc, but write the while statement as
follows?

 while test $count -le $#

l  Rewrite the script using a for loop instead of a while

loop.

20

17-11-20

11

while Loop Example (2)

% cat myecho
#!/bin/sh
Read lines from standard input until EOF (Ctrl-D)

while read myline
do
 echo "$myline"
done

21

I/O Redirection of Control Structures

l  Control structures can be
treated as any other command
with respect to I/O redirection.

Note: This script
l  trims leading/trailing

whitespace
l  ignores backlash characters ‘\’
l  ignores the last line if it does

not end with a ‘\n’

% cat weakcat
#!/bin/sh
My (weaker) version of
"cat"

while read myline
do
 echo "$myline"

done < $1
read lines from file $1

22

17-11-20

12

I/O Redirection: Example

% cat weakcat
#!/bin/sh
My (weaker) version of "cat"
while read myline
do
 echo "$myline"
done < $1 > $1.out

read lines from file $1
write lines to file $1.out

23

until Loops

until condition
do
 command(s)
done

l Command test is often used in condition.
l Exit loop when condition is met.

24

17-11-20

13

until Loop Example

% cat grocery
#!/bin/sh
Enter a grocery list and

store in a file indicated by $1

echo To end list, enter \"all\".
item=nothing
until test $item = “all”
do
 echo -n "Enter grocery item: "
 read item
 echo $item >> $1
done

25

until Loop Example Output

% grocery glist
To end list, enter "all".
Enter grocery item: milk
Enter grocery item: eggs
Enter grocery item: lettuce
Enter grocery item: all

% cat glist
milk
eggs
lettuce
all

26

17-11-20

14

case Statement

case variable in
pattern1) command(s);;
pattern2) command(s);;
. . .
patternN) command(s);;
*) command(s);; # all other cases
esac

l Why the double semicolons?

27

case Statement Example
% cat mysched
#!/bin/sh
echo -n "Enter the day (mon, tue, wed, thu, fri): "
read day
case $day in
 mon) echo 'CSE2031 2:30-4:30 CLH-H'

 echo 'CSE2021 17:30-19:00 TEL-0016';;
 tue | thu)

 echo 'CSE2011 17:30-19:00 SLH-E';;
 wed) echo 'No class today. Hooray!';;
 fri) echo 'CSE2031 2:30-4:30 LAB 1006';;
 *) echo 'Day off. Hooray!';;
esac

28

17-11-20

15

Process-Related Variables
l  Variable $$ is PID of the shell.

% cat showpid
#!/bin/sh
ps
echo PID of shell is $$

% showpid

29

Process Exit Status

l  All processes return exit status (return code).
l  Exit status tells us whether the last command was

successful or not.
l  Stored in variable $?
l  0 (zero) means command executed successfully.
l  0 is good; non-zero is bad.
l  Good practice: Specify your own exit status in a shell

script using exit command.
¡ default value is 0 (if no exit code is given).

30

17-11-20

16

Process Exit Status: Example

l  An improved version of
grep.

% cat igrep
#!/bin/sh
Arg 1: search pattern

Arg 2: file to search

grep $1 $2
if test $? -ne 0
then
 echo Pattern not found.
fi

% igrep ‘bin’ grocery
#!/bin/sh!

% igrep ‘bin2’ grocery
Pattern not found.

31

Next lecture

l Shell scripting – part 3

l Reading for this lecture:
¡  Posted notes (chapter 33)

32

