
1

Signed Integer Representations

1

Signed Integer Representations

l Signed magnitude representation: setting
a bit (often the most significant bit) to
¡ 0 for positive numbers
¡ 1 for negative numbers

l One’s complement:
¡ flipping the bits of +n to get –n.

l Two’s complement:
¡ adding one to the one’s complement.

2

2

Examples

3

Why Two’s Complement?

4

3

Bitwise Operators

5

Bitwise Operators (2.9)

l Work on individual bits
 & | ^ ~
l Example:
a = 1; /* 0000 0001 */
b = 2; /* 0000 0010 */
c = a & b; /* c = 0000 0000 = 0 */
d = a && b; /* d = 1 */
l & is a bitwise operator.
l  && is a relational operator.

6

4

Example

7

Application: Bit Masking

int n;
n = n & 0177;
sets to zero all but the low-
order 7 bits of n.

int x;
x = x & ~077;
sets the last six bits of x to
zero.

#define SET_ON
0XFFFF

int x;
x = x | SET_ON;

sets to one in x the bits that
are set to one in SET_ON.

8

5

Bit Shifting

l  x<<y means shift x to the left y times.
l  equivalent to multiplication by 2y

l  x>>y means shift x to the right y bits.
¡ equivalent to division by 2y

l  Left shifting 3 many times:

0 3

1 6

2 12

3 24

4   48

5   ...

9

Application: Bit Counting

/* bitcount: count 1 bits in x */
int bitcount(unsigned x) {
 int b;
 for (b = 0; x != 0; x >>= 1)
 if (x & 01)
 b++;
 return b;
}

10

6

Right Shifting – Unsigned Numbers

If unsigned numbers, then logical shift (filled with 0).

unsigned int i = 714;
357 178 89 44 22 11 5 2 1 0

11

Right Shifting – Signed Numbers

l If signed numbers, it could be
¡ logical shift (filled with 0), or
¡ arithmetic shift (keep the sign of signed numbers)

l Undefined in C (implementation dependent)

i = -714
-357 -178 -89 . . . -3 -2 -1 -1 -1 -1
(assume two’s compliment and arithmetic shift)

12

