Functions and Program Structure

EECS 2031

11 November 2017 1

Function Basics (4.1)

Functions

Brake large computing tasks into smaller: During the
design stage try to separate small tasks that may be
implemented as single function.

Can be reused

Scope
Where the name can be used/visible?




Definition and Declaration

Declaration (e.g., function prototype)
returned_type function_name ( list_of _arguments ) ;
Definition

returned_type function_name ( list_of _arguments )

{

declarations and statements
}

Return statement
return expresssion ;

return Statement (4.2)

Functions use return statement to return the
result to the caller.

return expression;

Functions can return any type: void, int, double,
pointer (to the variable or function), etc.

Inconsistent expressions will be cast to the
returned type of the function.




External Variables (4.3)

Internal variables
Defined inside of the function body and exists only when
the function is executed.

External objects
External variables and function are defined outside of
any function.
External variables may be used as a tool to
communicate between functions.

External Variables (cont.)

Problems with external variables
Everyone can access the variable (like public variables
in Java).
Low level of control.

Too many externals leads to bad program structure with
too many data connections between functions (problem

with modularity and reusing).

Bottom line:
Avoid external variables whenever possible!




Scope (4.4)

Scope is a part of the program within which a declared
name can be used.

Questions of interest:

How to write declarations so that variables are properly declared
during compilation?

How are declarations arranged so that all the pieces will be
properly connected when program is loaded?

How are declarations organized so there is only one copy?

How external variables are initialized (so that all of them are
initialize once)?

extern Declaration

In order to use a variable in
another file or before its definition.

file1.c file2.c
extern int size ; int size = SIZE ;
extern char buff[ ] ; char buff[SIZE] ;




Declaration vs. Definition

Declaration: announces the
properties of a variable (type).

file 1.c
extern int sp;
extern double val[ ];

Definition = Declaration + Storage
to be set aside.

file2.c
int sp =0;
double val[MAXVAL];

Static Variables (4.6)

static declaration restricts
(hide) the visibility (scope) of a
variable or a function.

Static external variables:
visible only in the source file in
which they are defined.

Example: routines in Comp.c
and Main.c cannot access
buf[] orbufp.

Those variable names can be
used in Comp.c and Main.c for
other variables without any
conflict since they are not
visible outside io.c.

/* File io.c */

#include <stdio.h>

static char buf[BUFSIZE] ;
static int bufp = 0;

int getch(void) { ... }

void ungetch(int c¢) { ... }

/* end of file io.c */




e

]

’Comp.c ‘ ’Common.h WJ ’Main.c Q

Project: Comp.o main.o io.o

cc Comp.o main.o io.o —o Project

Comp.o : Comp.c Common.h

cc —c Comp.c

Main.o: Main.c Common.h io.h

cc —c Main.c
io.o: io.hio.c
cc —c io.c

cc -c: stop compiler after producing
the object file, do not link.

Static Variables (cont.)

Static function: its name is

invisible outside of the file in

which it is declared.

Note: function names are

normally global.

Static internal variable:
visible only inside the function

in which it is defined.

remains in existence (not
coming and going each time
the function is called).
provide private, permanent
storage within a single
function.

static int power

(int base, int n) {

int getline(char s[]) {
static int counter;

int next;




Register Variables (4.7)

register declaration advises the compiler that the
variable will be heavily used.

The register variable will be placed in machine registers
= smaller, faster program.

Compilers are free to ignore the advice.

Examples:

register int i;
register char c;
my func( register long x, register unsigned y )

Register Variables (cont.)

Restrictions due to underlying hardware:
Only a few registers available.

Only certain types are allowed.

Excess/disallowed declarations are treated as normal
variables.

Not possible to take address of a register var.




Block Structure (4.8)

Block: delimited by { and }

if (n > 0) {
int i; /* declare a new i */
for (1 = 0; i < n; i++)

}
i is initialized each time the block is entered.

A static variable is initialized only the first time the block
is entered.

Block Structure (cont.)

int x;

int y;

f (double x)

{
double y;

}

The above works, but avoid that programming style!




Initialization (4.9)

Explicit initialization int x = 1;
char squote = '\'';
long day = 1000L * 60L * 60L *
External and static vars: 24L; /* milliseconds/day */
must be constant int binsearch( int x, int v[],

expressions int n )
{
int low = 0;

Automatic and register int high = n - 1;
vars: any expressions int mid;
(involving pre-defined

values or function calls)

Initialization (cont.)

No explicit initialization
External and static vars: initialized to 0.

Automatic and register vars: undefined
(garbage) initial values.

Arrays
int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 }; /* array of size 12 */
int months[12] = { 100, 25, 75 }; /* the rest is 0*/
char pattern = "ould"; /* same as below */
char pattern[] = { 'o', 'u', '1', 'd', '\0' };




Recursion (4.10)

In C, a function may call #include <stdio.h>
itself either directly or
indirectly. /* print n in decimal */

void printd(int n)
{
if (n < 0) {
putchar('-"');
n = -n;
}
if (n / 10)
printd(n / 10);
putchar(n % 10 + '0');
}

Recursion (cont.)

Advantages:

More compact code

Easier to write and understand
Disadvantage: more overhead for recursive
function calls

Stack space

Parameter saving and returning

20

10



