
1

Functions and Program Structure

EECS 2031

1 11 November 2017

Function Basics (4.1)

l Functions
¡ Brake large computing tasks into smaller: During the

design stage try to separate small tasks that may be
implemented as single function.

¡ Can be reused

l Scope
¡ Where the name can be used/visible?

2

2

Definition and Declaration

l Declaration (e.g., function prototype)
 returned_type function_name (list_of_arguments) ;

l Definition
returned_type function_name (list_of_arguments)
{

 declarations and statements
}

l Return statement
return expresssion ;

3

return Statement (4.2)

l Functions use return statement to return the
result to the caller.
 return expression;

l Functions can return any type: void, int, double,
pointer (to the variable or function), etc.

l Inconsistent expressions will be cast to the
returned type of the function.

4

3

External Variables (4.3)

l Internal variables
¡ Defined inside of the function body and exists only when

the function is executed.

l External objects
¡ External variables and function are defined outside of

any function.
¡ External variables may be used as a tool to

communicate between functions.

5

External Variables (cont.)

l Problems with external variables
¡ Everyone can access the variable (like public variables

in Java).
¡ Low level of control.
¡ Too many externals leads to bad program structure with

too many data connections between functions (problem
with modularity and reusing).

l Bottom line:
¡ Avoid external variables whenever possible!

6

4

Scope (4.4)

l  Scope is a part of the program within which a declared
name can be used.

l  Questions of interest:
¡ How to write declarations so that variables are properly declared

during compilation?
¡ How are declarations arranged so that all the pieces will be

properly connected when program is loaded?
¡ How are declarations organized so there is only one copy?
¡ How external variables are initialized (so that all of them are

initialize once)?

7

extern Declaration
In order to use a variable in
another file or before its definition.

file1.c
extern int size ;
extern char buff[] ;

file2.c
int size = SIZE ;
char buff[SIZE] ;

8

5

Declaration vs. Definition
Declaration: announces the
properties of a variable (type).

file 1.c
extern int sp;
extern double val[];

Definition = Declaration + Storage
to be set aside.

file2.c
int sp = 0;
double val[MAXVAL];

9

Static Variables (4.6)

l  static declaration restricts
(hide) the visibility (scope) of a
variable or a function.

l  Static external variables:
visible only in the source file in
which they are defined.

l  Example: routines in Comp.c
and Main.c cannot access
buf[] or bufp.

l  Those variable names can be
used in Comp.c and Main.c for
other variables without any
conflict since they are not
visible outside io.c.

/* File io.c */

#include <stdio.h>

static char buf[BUFSIZE];
static int bufp = 0;

int getch(void) { ... }

void ungetch(int c) { ... }

/* end of file io.c */

10

6

Project

Comp.o Main.o io.o

 io.h io.c Main.c Common.h Comp.c

Project: Comp.o main.o io.o
 cc Comp.o main.o io.o –o Project

Comp.o : Comp.c Common.h
 cc –c Comp.c

Main.o: Main.c Common.h io.h
 cc –c Main.c

io.o: io.h io.c
 cc –c io.c

cc -c: stop compiler after producing
the object file, do not link.

Static Variables (cont.)

l  Static function: its name is
invisible outside of the file in
which it is declared.

l  Note: function names are
normally global.

l  Static internal variable:
¡  visible only inside the function

in which it is defined.
¡  remains in existence (not

coming and going each time
the function is called).

¡  provide private, permanent
storage within a single
function.

static int power
 (int base, int n) {

 ...
}

int getline(char s[]) {
 static int counter;
 int next;
 ...
}

12

7

Register Variables (4.7)

l  register declaration advises the compiler that the
variable will be heavily used.

l  The register variable will be placed in machine registers
⇒ smaller, faster program.

l  Compilers are free to ignore the advice.
l  Examples:

 register int i;
 register char c;
 my_func(register long x, register unsigned y)

13

Register Variables (cont.)

Restrictions due to underlying hardware:
l Only a few registers available.
l Only certain types are allowed.

¡ Excess/disallowed declarations are treated as normal
variables.

l Not possible to take address of a register var.

14

8

Block Structure (4.8)

l  Block: delimited by { and }
if (n > 0) {
 int i; /* declare a new i */
 for (i = 0; i < n; i++)
 ...
}

l  i is initialized each time the block is entered.
l  A static variable is initialized only the first time the block

is entered.

15

Block Structure (cont.)

int x;
int y;
...
f(double x)
{
 double y;
}

l  The above works, but avoid that programming style!
16

9

Initialization (4.9)

Explicit initialization

l  External and static vars:
must be constant
expressions

l  Automatic and register
vars: any expressions
(involving pre-defined
values or function calls)

int x = 1;
char squote = '\'';
long day = 1000L * 60L * 60L *

24L; /* milliseconds/day */

int binsearch(int x, int v[],

int n)
{
 int low = 0;
 int high = n - 1;
 int mid;
 ...

}

17

Initialization (cont.)

No explicit initialization
l External and static vars: initialized to 0.
l Automatic and register vars: undefined

(garbage) initial values.

Arrays

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
30, 31 }; /* array of size 12 */

int months[12] = { 100, 25, 75 }; /* the rest is 0*/
char pattern = "ould"; /* same as below */
char pattern[] = { 'o', 'u', 'l', 'd', '\0' };

18

10

Recursion (4.10)

l  In C, a function may call
itself either directly or
indirectly.

#include <stdio.h>

/* print n in decimal */

void printd(int n)
{
 if (n < 0) {
 putchar('-');
 n = -n;
 }
 if (n / 10)
 printd(n / 10);
 putchar(n % 10 + '0');

}
19

Recursion (cont.)

l Advantages:
¡ More compact code
¡ Easier to write and understand

l Disadvantage: more overhead for recursive
function calls
¡ Stack space
¡ Parameter saving and returning

20

