
1

File Access (7.5)

EECS 2031

1 12 November 2016

Declaring and Opening Files
FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:
FILE *ifp, *ofp;
char iname[50], oname[50];
scanf(“%s %s”, iname, oname);
ifp = fopen(iname, "r");
if (ifp == NULL) { ... }
ofp = fopen(oname, "w");
if (ofp == NULL) { ... }
 2

2

Modes

fp = fopen(name, "r");
l  Returns NULL if file does not exist, or has no read

permission.

fp = fopen(name, “w");
l  If file does not exist, one will be created for writing.
l  If file already exists, the content will be erased when the

file is opened. So be careful!
l  Returns NULL if file has no write permission.

3

Modes (cont.)
fp = fopen(name, “a"); /* append */
l  If file does not exist, one will be created for writing.
l  If file already exists, the content will be preserved.
l  Returns NULL if file has no write permission.

l  May combine multiple modes.
fp = fopen(name, "rw");

 File may be read first, but the old content will be erased as soon as
something is written to the file.

fp = fopen(name, "ra");
fp = fopen(name, “aw"); /* same as “a” */
 4

3

Reading and Writing Files

int getc(FILE *fp)
int putc(int c, FILE *fp)
int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

int c;
while ((c = getc(ifp)) != EOF)
 putc(c, ofp);

char ch;
while (fscanf(ifp, “%c”, &ch) != EOF)
 fprintf(ofp, “%c”, ch);

5

Closing Files

int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

l  Most operating systems have some limit on the number of files that
a program may have open simultaneously ⇒ free the file pointers
when they are no longer needed.

l  fclose is called automatically for each open file when a program
terminates normally.

l  For output files: fclose flushes the buffer in which putc is
collecting output.

6

4

Reminder: I/O Redirection

l  In many cases, I/O redirection is simpler than using file
pointers.

a.out < input_file > outout_file

a.out < input_file >> outout_file

7

Macro Substitution (4.11.2)
l  #define name replacement_text

¡  subsequent occurrences of the token name will be replaced by the
replacement text.

l  Macro substitutions are faster than function calls.

#define max(A, B) ((A) > (B) ? (A) : (B))
x = max(p+q, r+s);
/* x = ((p+q) > (r+s) ? (p+q) : (r+s)); */
i = 1; j = 10;
y = max(i++, j++); /* final values of i and j ?*/

#define square(x) x * x /* what’s wrong? */
z = square(y + 1);

8

