File Access (7.5)

EECS 2031

12 November 2016 1

Declaring and Opening Files

FILE *fp; /* file pointer */
FILE *fopen(char *name, char *mode);

Example:

FILE *ifp, *ofp;

char iname[50], oname[50];
scanf(“%s %s”, iname, oname) ;
ifp = fopen(iname, "r");

if (ifp == NULL) { ... }

ofp = fopen(oname, "w");

if (ofp == NULL) { ... }

Modes

fp = fopen(name, "r");
Returns NULL if file does not exist, or has no read
permission.

fp = fopen(name, “w");
If file does not exist, one will be created for writing.

If file already exists, the content will be erased when the
file is opened. So be careful!

Returns NULL if file has no write permission.

Modes (cont.)

fp = fopen(name, “a"); /* append */
If file does not exist, one will be created for writing.
If file already exists, the content will be preserved.
Returns NULL if file has no write permission.

May combine multiple modes.
fp = fopen(name, "rw");

File may be read first, but the old content will be erased as soon as
something is written to the file

fp = fopen(name, "ra");

fp = fopen(name, “aw"); /* same as “a” */

4

Reading and Writing Files

int getc(FILE *fp)

int putc(int c, FILE *fp)

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

int c;
while ((c = getc(ifp)) != EOF)
putc(¢, ofp);

char ch;
while (fscanf(ifp, “%c¢”, &ch) != EOF)
fprintf(ofp, “%c”, ch);

Closing Files
int fclose(FILE *fp)

fclose(ifp);
fclose(ofp);

Most operating systems have some limit on the number of files that
a program may have open simultaneously = free the file pointers
when they are no longer needed.

fclose is called automatically for each open file when a program
terminates normally.

For output files: £close flushes the buffer in which putc is
collecting output.

Reminder: I/O Redirection

In many cases, I/O redirection is simpler than using file
pointers.

a.out < input file > outout_file

a.out < input file >> outout file

Macro Substitution (4.11.2)

#define name replacement _text

subsequent occurrences of the token name will be replaced by the
replacement text.

Macro substitutions are faster than function calls.

#define max (A, B) ((A) > (B) ? () : (B))

x = max(p+q, r+s);

/* x = ((p+tq) > (r+s) ? (p+q) : (r+s)); */

i=1; 3 =10;

y = max(i++, j++); /* final values of i and j ?*/

#define square(x) x * x /* what’s wrong? */
z = square(y + 1);

