Pointers (part 1)

EECS 2031
What are pointers?
We have seen “pointers” before.
_ 1001 2047
scanf(“%f”, &inches);
L 50 ’ 1001 I

var ptr
(normal variable) (pointer)

Example

char c; char c;
char *p;
c = getchar(); c = getchar();
p = &c;
printf (“%c”, c); printf (“%c”, *p);
1001 2047
1 50 J 1001 J
var ptr
(normal variable) (pointer)

Pointers and Addresses (5.1)

» Use the "address of" operator (&)
» General form:

pointer_variable = &ordinary_variable

I |

Name of the pointer Name of ordinary
variable

Pointers Variables
Pointer = memory address of a variable

Declared with data type, * and identifier
type *pointer varl, *pointer var2, ..;

Example.
double *p;
int *pl, *p2;

There has to be a * before each of the pointer
variables

Using a Pointer Variable

Can be used to access a value

Use unary operator *
*pointer_variable
In executable statement, indicates value
Example
int *pl, vl; Output:
vl 0; zg
pl &vl;
*pl = 42;
printf (“sd\n“,v1);
printf (“sd\n, *pl) ;

Pointer Example 1

intx,y;
int *z;
X =25;
y=X
z = &X; X
1200 1204 1208
l 25
| o5 | 1204
y 9608 8404 Z

Pointer Variables

z= 4 BAD idea

Instead, use z = &x

Pointer Example 2

y

8

/<IN
(1204 |)

v\ X
1200 1204 1208
YA

int x = 25, *y, z;
y = &;
z="%y;

(25

)

TS

25

9608

Pointer Example 3

int*p1, *p2,x =8,y =9; p1=8&x; p2=_8&y;

pl = p2;

Before:
e
G

*pl = *p2;

Before:
pl

p2

L)L)
L)L)

Aft

Aft

][

More Examples

intx =1, y =2, z[10], k;

int *ip;

ip = &x; /* ip points to x*/
y = *ip; /* y is now 1 */
ip = 0; / x is now 0 */
z[0] = O;

ip = &z[0]; /* ip points to z[0] */
for (k = 0; k < 10; k++)
z[k] = *ip + k;
*ip = *ip + 100;
++*ip;
(*ip) ++; /* How about *ip++ ?2°?? */

Precedence and Associativity

Operators Associativity
0 o ->. left to right
! ~ ++ -- + - *(Hpe)sizeof v right to left
* /% left to right
<< >> left to right

|
|
!
[
‘+ - left to right
|
‘< <= > >= left to right
‘:: 1= left to right
[& left to right
‘ left to right
|

| left to right

s left to right

‘ || left to right

‘? : right to left

= += -= *= /= %= &= "= |= <<= >>=|righttoleft

|
[, left to right 12

Pointers and Function Arguments (5.2)

Write a function that swaps C passes arguments to
the contents of two functions by values (as
integers a and b. Java does)

void main() {

int a, b; void swap(int x, int y)
/* Input a and b */ {
swap(a, b); int temp;
printf (“*%d %d”, a, b); temp = x;
{ x =y
y = temp;

The Correct Version

void swap (int *px, int *py) in caller:

{

int temp;
b: .
temp = *px; [::F\

*px = *py; a: i
*py = temp; N
}
Il swap:
void main() {
int a, b;

px:
/* Input a and b */

swap (&a, &b); py:[zz%’

printf (“%d %d”, a, b);

Pointers and Arrays

Pointers and Arrays (5.3)

Identifier of an array is equivalent to the address of its
first element.

int numbers[20];

int *p;
P = numbers // valid
numbers = p // invalid

p and numbers are equivalent and they have the same
properties.

Only difference is that we could assign another value to
the pointer p whereas numbers will always point to the
first of the 20 integer numbers of type int.

Pointers and Arrays: Example

int a[l10];
/* Init af[i]

i *x/

int *pa; pa:

pa = &a[0] N

/*same as pa

I

Q
*
~
w

X = *pa;

/*same as x = al[0]*/ = mﬂ:)iii)

int y, z;
y = *(pa + 1);
z *(pa + 2); 1

Pointers and Arrays: More Examples

int a[10], *pa; Notes

pa = a; a = pa; a++; areillegal.

/* same as pa = &a[0]*/ Think of a as a constant, not a
i modifiable variable.

pat++;

/*same as pa = &a[l]*/
pl-11, p[-2], etc.are

syntactically legal.
al[i] < * (a+i) y yleg

&gal[i] < a+i

pali] < * (pat+i)

Accessing Arrays Using Pointers

#include <stdio.h>
int main()

int data[5], 1i;
printf("Enter elements: ");

for(i = 8; i < 5; ++i.) Note the use of (data + i)
scanf("%d", data + 1i);

printf("You entered: \n");
for(i = 8; i < 5; ++i) Note the use of * (data + i)
printf("%d\n", *(data + 1i));

return 0;

Homework

Lab 2, problem B: Write a C program to input a set of
integers, store them in an array, find the maximum and
minimum values of the set, and display those two values.

Lab 3, problem A: Write a C program to input a line of
characters and store the input characters in an array.
Reverse the order of the input characters and display the
reversed string on the standard output using printf.

This time access elements of the arrays using pointers,
not array indexing.

20

10

Arrays Passed to a Function

Arrays passed to a function are passed by

reference.

The name of the array is a pointer to its first

element.

21

Computing String Lengths

/* strlen: return length of string s */

int strlen(char *s) /* or (char s[]) */
{

int n;

for (n=0; *s !'= '\0', s++)

n++;

return n;
}
Callers:
strlen("hello, world”); /* string constant */
char array[100]; /* then input a string into array */

strlen(array);
char *ptr = array;
strlen(ptr);

22

11

Passing Sub-arrays to Functions

It is possible to pass part of an
array to a function, by passing
a pointer to the beginning of Caller:

the sub-array. int a[100]
in a ;

Function my_£unc (&a[3]);

my func(int arr[]) {...} or

or my func(a + 5);

my func(int *arr) {...}

23

Address Arithmetic (5.4)

Given pointers p and q of the same type and integer n, the
following pointer operations are legal:
p+n, p—n

n is scaled according to the size of the objects p points to. If p
points to an integer of 4 bytes, p + n advances by 4*n bytes.

q-p, q-p+10,9-p+n(assuming q > p)
But p + g isillegal!

q=p; p=q+100;
If p and q point to different types, must cast first. Otherwise, the
assignment is illegal!

if(p==q),if(p!=q+n)
p = NULL;
if (p==NULL), same asif(!p) 2

12

Address Arithmetic: Example

/* strlen: return length of string s */
int strlen(char *s)

{
char *p = s;
while (*p !'= '\0")
pt++;
return p - s;

25

Address Arithmetic: Summary

Legal:
assignment of pointers of the same type
adding or subtracting a pointer and an integer

subtracting or comparing two pointers to members of the same
array

assigning or comparing to zero (NULL)

lllegal:
add two pointers
multiply or divide or shift or mask pointer variables
add float or double to pointers

assign a pointer of one type to a pointer of another type (except for
void *) without a cast

26

13

Character Pointers and Functions (5.5)

A string constant (“hello world”) is an array of characters.

The array is terminated with the null character "\0' so that
programs can find the end.

char *pmessage;

pmessage = "now is the time";

assigns to pmessage a pointer to the character array. This is not a
string copy; only pointers are involved.

C does not provide any operators for processing an entire string of
characters as a unit.

27

Important Difference between ...

char amessage[] = "now is the time"; /* an array */

char *pmessage = "now is the time"; /* a pointer */

amessage Will always refer to the same storage.
pmessage may later be modified to point elsewhere.

amessage: now is the time\0

pmessage: | now is the time\0

28

Example: String Copy Function

/* strcpy: copy t to s; array
subscript version */

void strcpy(char *s, char *t)
{
int i;
i=20;
while ((s[i] = t[i]) '= '\0")
i++;

/* strcpy: copy t to s; pointer
version */

void strcpy(char *s, char *t)

{

int i;

i=20;

while ((*s = *t) != '\0') {
s++; t++;

}
}

/* strcpy: copy t to s; pointer
version 2 */

void strcpy(char *s, char *t)
{
while ((*s++ = *t++) != '\0') ;

} 29

Dynamic Memory Allocation

25 September 2017

EECS 2031

30

15

Dynamic Memory Allocation (7.8.5)

How to allocate memory during run time?

Example: input an integer n. Allocate an array of
size n.

int n;
scanf(“%d”, &n);
int my array[n]; /* not allowed in C */
malloc()
In stdlib.h

void *malloc(int n);

Allocates memory at run time.

Returns a pointer (to a void) to at least n bytes
available.

Returns null if the memory was not allocated.
The allocated memory is not initialized.

32

16

Example

#include<stdio.h>
#include<stdlib.h>
main() {
int *a, i, n, sum=0;
printf(“Input an aray size “);
scanf(“%d”, &n);
a = malloc (n * sizeof(int));
for(i=0; i<n; i++) scanf(“3d”, sa[i]);
for(i=0; i<n; i++) sum += a[i];
free(a);

printf (“Number of elements = %d and the sum is %d\n”, n, sum);

33

calloc()
void *calloc(int n, int s);

Allocates an array of n elements where each
element has size s;

calloc() initializes the allocated memory all to
0.

34

17

realloc()

What if we want our array to grow (or shrink)?
void *realloc(void *ptr, int n);

Resizes a previously allocated block of memory.

ptr must have been returned from a previous
calloc,malloc, Or realloc.

The new array may be moved if it cannot be
extended in its current location.

35

free()
void free(void *ptr)

Releases the memory we previously allocated.

ptr must have been returned from a previous
calloc,malloc, Or realloc.

C does not do automatic “garbage collection”.

36

18

Example

#include<stdio.h>

#include<stdlib.h>

main() {
int *a, i, n, sum=0;
printf(“Input an aray size “);
scanf(“%d”, &n);

a = calloc(n, sizeof(int))

for(i=0; i<n; i++) scanf(“3d”, sa[i]):
for(i=0; i<n; i++) sum += a[i];
free(a);

printf (“Number of elements = %d and the sum is %d\n”, n, sum);

37

Next time ...

Structures (Chapter 6)

38

19

