Introduction to C

EECS 2031

7 September 2017 1

History

C and Unix: widely used, powerful, and fast.

Both started at AT&T Bell Labs.

Unix was written in assembly, later changed to C.
Many variants of Unix.




2015 Top 10 Programming Languages

Language Rank Types Spectrum Ranking Spectrum Ranking
1. Java &0z 100.0 - 100.0
2. C 0% |ess 99.3
3. C++ ik I 955
4. Python ® I 96.5 ——935
5. C# &0 913 92.4
6. R Gl 84.8 84.8
7. PHP [ 845 \ 845
8. JavaScript &0 83.0 ', 789
9. Ruby & I 76.2 743
10. Matlab | 724 72.8

Source: http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Ranking method: weighting and combining 12 metrics from 10 data sources (IEEE Xplore digital
library, GitHub, CareerBuilder, etc.)

C vs. Java

Java-like (actually Java has a C-like syntax),
some differences

No //, only /* */ multi-line and no nesting

No garbage collection
Remember to free unused space yourself!

No classes
No exceptions (try ... catch)
No type “String”

string = array of characters ended by a null character \0’

4




First C Program

#include <stdio.h>
main () {
printf (“hello, world \n");

#include <filename.h> replaces the line
by the actual file before compilation starts.

stdio.h: defines most of the C file I1/0O
functions

Compile and Run

> cc hello.c
> a.out
hello, world

> cc -0 hello hello.c
> hello
hello, world




Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character
\’ Single quote

More Examples

Many examples are given in the textbook, Chapter 1.
To be discussed in class and in weekly labs.




Basic Input and Output

EECS 2031

Basic I/O

Every program has a standard input and output.
Usually, keyboard and monitor, respectively.
Can use > and < for redirection

getchar()

putchar()

printf()

scanf()

Tidbit: How to pronounce “char” in “getchar”?
http://fenglish.stackexchange.com/questions/60154/how-to-pronounce-the-programmers-
abbreviation-char
10




getchar( ) (7.1)

To read one character at a time from the
standard input (the keyboard by default):

int getchar (void)
returns the next input character each time it is
called;
returns EOF when it encounters end of file.
EOF input: Ctrl-d (Unix) or Ctrl-z (Windows).
EOF value defined in <stdio.h> is —1.

putchar(c) (7.1)

Puts the character c on the standard output (the
screen by default).

int putchar (int)
returns the character written;
returns EOF if an error occurs.




Example

#include <stdio.h>
#include <ctype.h>
main() /* convert input to lower case*/
{
int c¢;
c = getchar();
while ( ¢ != EOF ) {
putchar( tolower(c) );
c = getchar();
}

return O;

}

ctype.h

Defines the functions that operate on single-byte
characters
tolower (
toupper (
islower (
isupper (
isalpha(

Nt N N Nt N S

isalnum(
etc.




Example: more compact code

#include <stdio.h>
#include <ctype.h>

main() /* convert input to lower case*/
{
int c¢;
while (( ¢ = getchar() ) != EOF )
putchar( tolower(c) );

return O;

}

getchar() Behaviours

getchar() buffers input characters until a new line
or EOF is entered, at which point if there is an
output function executed, the buffer is written out
and then emptied.

If the buffer is currently empty and EOF is
entered, the program terminates.




Data Types and Sizes in C

4 basic types in C:
char — characters (8 bits)
int — integers (either 16 or 32 bits)
float — single precision floating point numbers (4
bytes)
double — double precision floating point
numbers (8 bytes)

Strings

A string = a one-dimensional array of characters ended by a
null character \0’

{\HI , ‘e’ , V1’ , V1’ , ‘o! , \\0!};
{\H/ ,\e/ ,\1/ ,\1/ ,‘O’ ,\\0/};
“Hello”;
“Hello”;

char greeting[6]

char greeting][ ]

char greeting[6]

char greeting|[ ]

Using pointers (later):
char *greeting;
Note: must allocate space before initializing the string with “Hello”




printf( ) and scanf( )

Include file stdio.h
printf (“This is a test %d \n”, x);
scanf (“3x %d”, &x, &y);

%c char
%d int (decimal)
%f float
%lIf double
%x hexadecimal integer
%s string
printf( ) (7.2)
int printf (char *format, argl, arg2, ...);

converts, formats, and prints its arguments on
the standard output under control of the format.

returns the number of characters printed (usually
we are not interested in the returned value).

20

10



Examples of printf( )

#include<stdio.h>

main()

{
int a=15, b =a / 2;
float ¢ = 15.3, d = ¢ / 3;

indigo 118 % a.out
printf("%d\n",b); 7
printf("%s3d\n",b); 7
printf("%03d\n",b); 007
printf("sf\n",d); g ig%%
printf("%3.2f\n",d); ' 5.10
rintf("s8.2f\n",d); '

Srintf("%@S.Zf\n“,d); 00005.10

21

Output Formatting with printf( )

A minus sign, which specifies left adjustment of the converted
argument.

A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide.

If necessary it will be padded on the left (or right, if left adjustment is
called for) to make up the field width.

A period, which separates the field width from the precision.

A number, the precision, that specifies
the maximum number of characters to be printed from a string,
the number of digits after the decimal point of a floating-point value,
the minimum number of digits for an integer.

22

11



printf( ) with Floating-point Values

#include<stdio.h>

main()

{
double d = 890.1234567;
printf( ":%lf:\n", d );
printf( ":%101f:\n", d );
printf( ":%.71f:\n", d );
printf( ":%151f:\n", d );
printf( ":%-151f:\n", d );
printf( ":%.151f:\n", d );
printf( ":%15.41f:\n", d );
printf( ":%-15.41f:\n", d );

}

1890.123457:
1890.123457:
1890.1234567:

: 890.123457:
:1890.123457

:1890.123456700000020:

890.1235:
1890.1235

23

printf( ) Examples with Strings

printf(“:%s:”,
printf (“:%10s:”,
printf(“:%$.10s:”,
printf (“:%-10s:",
printf(“:%.15s:”,
printf (“:%-15s:”,
printf (“:%15.10s:”,

printf (“:%$-15.10s:"”

= m

U O e

|
mmubnmoon
= W n nn .-

9O d0 df d0 o o o o
o m

(|
m -

L

“hello,
“hello,
“hello,
“hello,
“hello,
“hello,
“hello,
, “hello,

world”) ;
world”) ;
world”) ;
world”) ;
world”) ;
world”) ;
world”) ;
world”) ;

:hello, world:
:hello, world:
:hello, wor:

:hello, world:
:hello, world:
:hello, world

hello, wor:

:hello, wor

24

12



printf Conversions

{('hamcter Argument type; Printed As
d,i int; decimal number
[o int; unsigned octal number (without a leading zero)
X int; unsigned hexadecimal number (without a leading 0x or 0X), using abcdef or
o ABCDEF for 10, ....15.
[u int: unsigned decimal number
[c int: single character
- char *; print characters from the string untila '\ 0 or the number of characters given
. by the precision.
[f double; [-]m.dddddd. where the number of d's is given by the precision (default 6).
e B double; [-]1m.dddddde + / -xx or [ -] m.ddddddE+ / -xx, where the number of d's is
o given by the precision (default 6).
e double; use ¥e or %E if the exponent is less than -4 or greater than or equal to the
9: precision; otherwise use $£. Trailing zeros and a trailing decimal point are not printed.
[p void *: pointer (implementation-dependent representation).

no argument is converted: print a %

25

scanf( ) (7.4)

scanf( ) is the input analog of printf( ).

To read an integer:
int num;

scanf ("%d”, &num) ;
&num is a pointer to num.

To read a char and a float:
char ch; float fnum;
scanf ("%c %$f”, &ch, &fnum);

26

13



scanf( )

int scanf(char *format, argl, arg2, ...);

reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

stops when it exhausts its format string, or when some input fails to
match the control specification.

returns the number of successfully matched and assigned input
items (e.g., to decide how many items were found).

returns O if the next input character does not match the first
specification in the format string (i.e., an error).

On the end of file, EOF is returned.

Note: argl, arg2, ... must be pointers!

27
f Conversions
[Character [ Input Data: Argument type
[d [decimal integer: int *
5 integer: int *. The integer may be in octal (leading 0) or hexadecimal (leading 0x or
0X).
lo [octal integer (with or without leading zero): int *
lu [unsigued decimal integer: unsigned int *
lx [hexadecimal integer (with or without leading 0x or 0X): int *
characters: char *. The next input characters (default 1) are placed at the indicated spot.
c The normal skip-over white space is suppressed: to read the next non-white space
character. use $1s
s character string (not quoted): char *. pointing to an array of characters long enough for
the string and a terminating ' \0' that will be added.
e £ floating-point number with optional sign, optional decimal point and optional exponent:
'H9 0 f10at +
% literal %: no assignment is made.
28

14



I/O Redirection

prog < infile
prog reads characters
from infile instead of the
standard input.

otherprog | prog

Output from otherprog is
the input to prog.

prog > outfile

prog writes to outfile
instead of the standard
output.

prog | anotherprog

puts the standard output
of prog into the standard
input of anotherprog.

29

Next Lecture

Types, Operators and Expressions (Chapter 2)

30

15



