
1

Introduction to C

EECS 2031

1 7 September 2017

History

l C and Unix: widely used, powerful, and fast.
l Both started at AT&T Bell Labs.
l Unix was written in assembly, later changed to C.
l Many variants of Unix.

2

2

2015 Top 10 Programming Languages

l  Source: http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages
l  Ranking method: weighting and combining 12 metrics from 10 data sources (IEEE Xplore digital

library, GitHub, CareerBuilder, etc.)
3

C vs. Java

l Java-like (actually Java has a C-like syntax),
some differences

l No //, only /* */ multi-line and no nesting
l No garbage collection

¡ Remember to free unused space yourself!

l No classes
l No exceptions (try … catch)
l No type “String”

¡ string = array of characters ended by a null character ‘\0’

4

3

First C Program

#include <stdio.h>
main() {
 printf(“hello, world \n”);
}

l #include <filename.h> replaces the line

by the actual file before compilation starts.
l stdio.h: defines most of the C file I/O

functions

5

Compile and Run

> cc hello.c
> a.out
hello, world

> cc –o hello hello.c
> hello
hello, world

6

4

Special Characters

\n New line

\t Tab

\” Double quote

\\ The \ character

\0 The null character

\’ Single quote

7

More Examples

l  Many examples are given in the textbook, Chapter 1.
l  To be discussed in class and in weekly labs.

8

5

Basic Input and Output

EECS 2031

9

Basic I/O

l Every program has a standard input and output.
l Usually, keyboard and monitor, respectively.
l Can use > and < for redirection
l getchar()
l putchar()
l printf()
l scanf()

Tidbit: How to pronounce “char” in “getchar”?
http://english.stackexchange.com/questions/60154/how-to-pronounce-the-programmers-

abbreviation-char
10

6

getchar() (7.1)

l To read one character at a time from the
standard input (the keyboard by default):

 int getchar(void)

l returns the next input character each time it is
called;

l returns EOF when it encounters end of file.
¡ EOF input: Ctrl-d (Unix) or Ctrl-z (Windows).
¡ EOF value defined in <stdio.h> is −1.

11

putchar(c) (7.1)

l Puts the character c on the standard output (the
screen by default).

 int putchar(int)
l returns the character written;
l returns EOF if an error occurs.

12

7

Example
#include <stdio.h>
#include <ctype.h>
main() /* convert input to lower case*/
{
 int c;
 c = getchar();
 while (c != EOF) {
 putchar(tolower(c));
 c = getchar();
 }
 return 0;
}

13

ctype.h

l Defines the functions that operate on single-byte
characters
¡ tolower()
¡ toupper()
¡ islower()
¡ isupper()
¡ isalpha()
¡ isalnum()
¡ etc.

14

8

Example: more compact code

#include <stdio.h>
#include <ctype.h>

main() /* convert input to lower case*/
{
 int c;
 while ((c = getchar()) != EOF)
 putchar(tolower(c));
 return 0;
}

15

getchar() Behaviours

l getchar() buffers input characters until a new line
or EOF is entered, at which point if there is an
output function executed, the buffer is written out
and then emptied.

l If the buffer is currently empty and EOF is
entered, the program terminates.

9

Data Types and Sizes in C

4 basic types in C:
l  char – characters (8 bits)
l  int ─ integers (either 16 or 32 bits)
l  float – single precision floating point numbers (4

bytes)
l  double – double precision floating point

numbers (8 bytes)

17

Strings

A string = a one-dimensional array of characters ended by a
null character ‘\0’

char greeting[6] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};
char greeting[] = {‘H’,‘e’,‘l’,‘l’,‘o’,‘\0’};
char greeting[6] = “Hello”;
char greeting[] = “Hello”;

Using pointers (later):
char *greeting;
Note: must allocate space before initializing the string with “Hello”

18

10

printf() and scanf()

Include file stdio.h
printf(“This is a test %d \n”, x);
scanf(“%x %d”, &x, &y);
 %c char

%d int (decimal)
%f float
%lf double
%x hexadecimal integer
%s string

19

printf() (7.2)

int printf(char *format, arg1, arg2, ...);

l converts, formats, and prints its arguments on
the standard output under control of the format.

l returns the number of characters printed (usually
we are not interested in the returned value).

20

11

Examples of printf()

21

Output Formatting with printf()

l  A minus sign, which specifies left adjustment of the converted
argument.

l  A number that specifies the minimum field width. The converted
argument will be printed in a field at least this wide.
¡  If necessary it will be padded on the left (or right, if left adjustment is

called for) to make up the field width.
l  A period, which separates the field width from the precision.
l  A number, the precision, that specifies

¡  the maximum number of characters to be printed from a string,
¡  the number of digits after the decimal point of a floating-point value,
¡  the minimum number of digits for an integer.

22

12

printf() with Floating-point Values

23

printf() Examples with Strings
printf(“:%s:”, “hello, world”);
printf(“:%10s:”, “hello, world”);
printf(“:%.10s:”, “hello, world”);
printf(“:%-10s:”, “hello, world”);
printf(“:%.15s:”, “hello, world”);
printf(“:%-15s:”, “hello, world”);
printf(“:%15.10s:”, “hello, world”);
printf(“:%-15.10s:”, “hello, world”);

24

13

printf Conversions

25

scanf() (7.4)

l  scanf() is the input analog of printf().

l  To read an integer:
int num;
scanf("%d”, &num);
l  &num is a pointer to num.

l  To read a char and a float:
char ch; float fnum;
scanf("%c %f”, &ch, &fnum);

26

14

scanf()

int scanf(char *format, arg1, arg2, ...);

l  reads characters from the standard input, interprets them according
to the specification in format, and stores the results through the
remaining arguments.

l  stops when it exhausts its format string, or when some input fails to
match the control specification.

l  returns the number of successfully matched and assigned input
items (e.g., to decide how many items were found).

l  returns 0 if the next input character does not match the first
specification in the format string (i.e., an error).

l  On the end of file, EOF is returned.
l  Note: arg1, arg2, ... must be pointers!

27

scanf Conversions

28

15

I/O Redirection

prog < infile
l  prog reads characters

from infile instead of the
standard input.

otherprog | prog
l  Output from otherprog is

the input to prog.

prog > outfile
l  prog writes to outfile

instead of the standard
output.

prog | anotherprog
l  puts the standard output

of prog into the standard
input of anotherprog.

29

Next Lecture

l Types, Operators and Expressions (Chapter 2)

30

