
17-12-03

1

3 December 2017

Quick Review

EECS 2031

2

C Basics
•  Data types and type conversion
•  Precedence and order of evaluation
•  Control flows
•  Functions

–  Passed by value
–  Passed by reference

•  I/O: getchar, printf, scanf
•  File access: fopen, fclose, fscanf, fprintf, getc, putc
•  Conditional expressions
•  Macro substitution

17-12-03

2

Macro Substitution (4.11.2)
•  #define name replacement_text

–  subsequent occurrences of the token name will be replaced by the
replacement text.

•  Macro substitutions are faster than function calls.

#define max(A, B) ((A) > (B) ? (A) : (B))
x = max(p+q, r+s);
/* x = ((p+q) > (r+s) ? (p+q) : (r+s)); */
i = 1; j = 10;
y = max(i++, j++); /* final values of i and j ?*/

#define square(x) x * x /* what’s wrong? */
z = square(y + 1);

3

4

Precedence and Order of Evaluation

4

17-12-03

3

5

Structures

•  Structures and functions
•  Nested structures
•  Arrays of structures
•  Pointers to structures

– Passed by value
– Passed by reference

•  Self-referential structures (linked lists)

6

Pointers
•  Function arguments
•  Relationship with arrays
•  Address arithmetic
•  Strings (char pointers)
•  Arrays of pointers; pointers to pointers

–  char *p1[10] versus char (*p2)[10]
•  Pointers and 2D-arrays
•  Dynamic memory allocation
•  Command-line arguments (argc, argv[][])

17-12-03

4

7

Pointers and Arrays
int a[10], *pa;
pa = a;
/* same as pa = &a[0]*/
pa++;
/*same as pa = &a[1]*/

a[i] ⇔ *(a+i)
&a[i] ⇔ a+i
pa[i] ⇔ *(pa+i)

Notes
a = pa; a++; are illegal.

Think of a as a constant, not a
var.

p[-1], p[-2], etc. are

syntactically legal.

7

8

char *words[] = { “apple”,
 “cherry”,
 “prune” };
char **p;
p = words;
printf("%c\n", **p);
printf("%c\n",*(*(p+1)+2));
printf("%c\n",*(*(p+2)+2)+1);

Arrays of Pointers: Example

+1

8

17-12-03

5

9

UNIX
•  Basic UNIX commands
•  Control structures (if-then-else, loops, case)
•  test command
•  expr utility
•  User variables (values are all strings)
•  Predefined variables ($*, $@, $#, $$, $?)
•  Command-line arguments (positional parameters)
•  Single quotes vs. double quotes
•  Back quotes
•  set command

