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1. Interfaces The Comparator interface provides a way to control how a sort method (such as
Collections.sort) sorts elements of a collection. For example, the following main method sorts a
list of strings by their length by using a StringLengthComparator object:

public static void main(String[] args) {
List<String> t = new ArrayList<>();
t.add("a very very very very long string");
t.add("a short string");
t.add("a medium length string");
Collections.sort(t, new StringLengthComparator());
System.out.println(t);

}

The Comparator interface is defined as follows:

public interface Comparator<T> {
/**
* Compares its two arguments for order. Returns a negative

* integer, zero, or a positive integer as the first argument

* is less than, equal to, or greater than the second.

*
* @param o1 the first object to be compared.

* @param o2 the second object to be compared.

* @return a negative integer, zero, or a positive integer as

* the first argument is less than, equal to, or greater than

* the second.
public int compare(T o1, T o2);

// ...
}

Implement the class StringLengthComparator so that strings are sorted by their length:

public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {

}
}

Solution:

public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {
return Integer.compare(s.length(), t.length());

}
}

Modify your implementation so that StringLengthComparator first sorts by string length then by
dictionary order (i.e., if two strings have the same length then they are sorted by dictionary order):
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public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {

}
}

Solution:

public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {
int result = Integer.compare(s.length(), t.length());
if (result == 0) {

result = s.compareTo(t);
}
return result;

}
}

2. Inheritance terminology

A simplified inheritance hierarchy for the video game Starcraft is shown below:

(a) Unit is a superclass of Terran

(b) Protoss is a subclass of Unit

(c) Zergling is a subclass of Zerg
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(d) Marine is not related to of Protoss

(e) Object is an ancestor of Unit

3. Composition instead of inheritance

Implement Stack using composition instead of inheritance.

public class Stack {
private List<Integer> stack;

public Stack() {

}

public Stack(Stack other) {

}

public void push(int value) {

}

public int pop() {

}
}

Solution:

public class Stack {
private List<Integer> stack;

public Stack() {
this.stack = new ArrayList<>();

}

public Stack(Stack other) {
this.stack = new ArrayList<>(other.stack);

}

public void push(int value) {
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this.stack.add(value);
}

public int pop() {
if (this.stack.isEmpty()) {

throw new NoSuchElementException();
}
return this.stack.remove(this.size() - 1);

}
}

4. Subclass constructors

Refer back to the figure in Question 2. Every Unit has an amount of health; suppose that the construc-
tors for Unit are implemented like so:

public class Unit {
private int health;

public Unit() {
this.health = 1;

}

public Unit(int health) {
this.health = health;

}

}

(a) Implement the Terran constructors; remember that Terran does not have direct access to the
field health:

public class Terran extends Unit {

public Terran() {

}

public Terran(int health) {

}

}

Solution:

public class Terran extends Unit {

public Terran() {
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super();
}

public Terran(int health) {
super(health);

}

}

(b) In addition to health, every Protoss unit has an amount of shields. Implement the Protoss
constructors:

public class Protoss extends Unit {
private int shields;

// initialize unit to 1 health and 1 shields
public Protoss() {

}

public Protoss(int health, int shields) {

}

}

Solution:

public class Protoss extends Unit {
private int shields;

// initialize unit to 1 health and 1 shields
public Protoss() {

super();
this.shields = 1;

}

public Protoss(int health, int shields) {
super(health);
this.shields = shields;

}

}
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5. Suppose you have a class Y that extends X. X has a method with the following precondition:

@pre. value must be a multiple of 2

If Y overrides the method which of the following are acceptable preconditions for the overriding method?
Provide a brief statement explaining your answer for each precondition.

(a) @pre. value must be a multiple of 2

Solution: Acceptable because the precondition is the same as in the superclass.

(b) @pre. value must be odd

Solution: Not acceptable because the precondition of the overriding method does not satisfy
the precondition of the parent method.

(c) @pre. value must be a multiple of 2 and must be less than 100

Solution: Not acceptable because the precondition of the overriding method does not allow
for values greater than or equal to 100 whereas the parent method has not such restriction.

(d) @pre. value must be a multiple of 10

Solution: Not acceptable because the precondition of the overriding method does not allow
for all values that are multiples of 2.

(e) @pre. none

Solution: Acceptable because every value that satisfies the parent method precondition also
satisfies the precondition of the overriding method.
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6. Suppose you have a class Y that extends X. X has a method with the following postcondition:

@return a string of length 10

If Y overrides the method which of the following are acceptable postconditions for the overriding
method? Provide a brief statement explaining your answer for each postcondition.

(a) @return a string of length at least equal to 10

Solution: Not acceptable because strings with length not equal to 10 do not satisfy the post-
condition of the parent method.

(b) @return the string equal to "weimaraner"

Solution: Acceptable because "weimaraner" is a string of length 10.

(c) @return the empty string

Solution: Not acceptable because the string with length 0 does not satisfy the postcondition
of the parent method.

(d) @return a string of length 10

Solution: Acceptable because the postcondition is identical to that of the parent method.

(e) @return a random string of length 10

Solution: Acceptable because a random string of length 10 is a string of length 10.

7. In the Mix class from the lecture slides, which of the following are legal exception specifications? Pro-
vide a brief statement explaining your answer for each method header.

@Override
public void someDogMethod() throws BadDogException

Solution: Acceptable because BadDogException is substitutable (is a subclass) for DogException

(a) @Override
public void someDogMethod() throws Exception

Solution: Not acceptable because Exception is not substitutable for DogException (Exception
is an ancestor of DogException)

(b) @Override
public void someDogMethod()
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Solution: Acceptable because no exception is thrown.

(c) @Override
public void someDogMethod() throws DogException, IllegalArgumentException

Solution: Trick question. IllegalArgumentException is an unchecked exception and in-
cluding it in the method header doesn’t actually do anything useful. The Java compiler will
allow you to write code such as this, so this is technically legal. From a substitutability point
of view, this is not acceptable because the overriding method is stating that it can fail (throw
an IllegalArgumentException) in situations that the the parent method does not.
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