
EECS2030 Week 7 worksheet Tue Feb 28, 2017

1. Interfaces The Comparator interface provides a way to control how a sort method (such as
Collections.sort) sorts elements of a collection. For example, the following main method sorts a
list of strings by their length by using a StringLengthComparator object:

public static void main(String[] args) {
List<String> t = new ArrayList<>();
t.add("a very very very very long string");
t.add("a short string");
t.add("a medium length string");
Collections.sort(t, new StringLengthComparator());
System.out.println(t);

}

The Comparator interface is defined as follows:

public interface Comparator<T> {
/**
* Compares its two arguments for order. Returns a negative

* integer, zero, or a positive integer as the first argument

* is less than, equal to, or greater than the second.

*
* @param o1 the first object to be compared.

* @param o2 the second object to be compared.

* @return a negative integer, zero, or a positive integer as

* the first argument is less than, equal to, or greater than

* the second.
public int compare(T o1, T o2);

// ...
}

Implement the class StringLengthComparator so that strings are sorted by their length:

public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {

}
}

Modify your implementation so that StringLengthComparator first sorts by string length then by
dictionary order (i.e., if two strings have the same length then they are sorted by dictionary order):

public class StringLengthComparator implements Comparator<String> {

public int compare(String s, String t) {

}
}

EECS2030 Week 7 worksheet Tue Feb 28, 2017

2. Inheritance terminology

A simplified inheritance hierarchy for the video game Starcraft is shown below:

(a) Unit is a of Terran

(b) Protoss is a of Unit

(c) Zergling is a of Zerg

(d) Marine is a of Protoss

(e) Object is a of Unit

3. Composition instead of inheritance

Implement Stack using composition instead of inheritance.

public class Stack {
private List<Integer> stack;

public Stack() {

}

public Stack(Stack other) {

}

public void push(int value) {

Page 2

EECS2030 Week 7 worksheet Tue Feb 28, 2017

}

public int pop() {

}
}

4. Subclass constructors

Refer back to the figure in Question 2. Every Unit has an amount of health; suppose that the construc-
tors for Unit are implemented like so:

public class Unit {
private int health;

public Unit() {
this.health = 1;

}

public Unit(int health) {
this.health = health;

}

}

(a) Implement the Terran constructors; remember that Terran does not have direct access to the
field health:

public class Terran extends Unit {

public Terran() {

}

public Terran(int health) {

}

}

Page 3

EECS2030 Week 7 worksheet Tue Feb 28, 2017

(b) In addition to health, every Protoss unit has an amount of shields. Implement the Protoss
constructors:

public class Protoss extends Unit {
private int shields;

// initialize unit to 1 health and 1 shields
public Protoss() {

}

public Protoss(int health, int shields) {

}

}

5. Suppose you have a class Y that extends X. X has a method with the following precondition:

@pre. value must be a multiple of 2

If Y overrides the method which of the following are acceptable preconditions for the overriding method?
Provide a brief statement explaining your answer for each precondition.

(a) @pre. value must be a multiple of 2

(b) @pre. value must be odd

(c) @pre. value must be a multiple of 2 and must be less than 100

(d) @pre. value must be a multiple of 10

(e) @pre. none

Page 4

EECS2030 Week 7 worksheet Tue Feb 28, 2017

6. Suppose you have a class Y that extends X. X has a method with the following postcondition:

@return a string of length 10

If Y overrides the method which of the following are acceptable postconditions for the overriding
method? Provide a brief statement explaining your answer for each postcondition.

(a) @return a string of length at least equal to 10

(b) @return the string equal to "weimaraner"

(c) @return the empty string

(d) @return a string of length 10

(e) @return a random string of length 10

7. In the Mix class from the lecture slides, which of the following are legal exception specifications? Pro-
vide a brief statement explaining your answer for each method header.

@Override
public void someDogMethod() throws BadDogException

(a) @Override
public void someDogMethod() throws Exception

(b) @Override
public void someDogMethod()

(c) @Override
public void someDogMethod() throws DogException, IllegalArgumentException

Page 5

