
EECS2030 Day 8 worksheet Tue Oct 3, 2017

1. comparable Implement a compareTo method for each of the following classes:

(a) public class Shoe implements Comparable<Shoe> {
private int size;

@Override
public int compareTo(Shoe other) {

// compare shoes by size

// the easy way
return Integer.compare(this.size, other.size);

}
}

public class Shoe implements Comparable<Shoe> {
private int size;

@Override
public int compareTo(Shoe other) {

// compare shoes by size

// the hard way
int result = 0;
if (this.size < other.size) {

result = -1; // or any other negative integer
}
else if (this.size > other.size) {

result = 1; // or any other positive integer
}
return result;

}
}

(b) public class TimeOfDay implements Comparable<TimeOfDay> {
private int hour; // 0-23 the hour of the day
private int minute; // 0-59 the minute of the hour

@Override
public int compareTo(TimeOfDay other) {

// compare times by hour then minute

int result = Integer.compare(this.hour, other.hour);
if (result == 0) {

// times have the same the same hour; we need to
// examine the minutes to determine the final answer
result = Integer.compare(this.minute, other.minute);

}
return result;

}
}

(c) public class Card implements Comparable<Card> {
private Rank rank; // the rank of the card 2-10, J, Q, K, A
private Suit suit; // the suit of the card



EECS2030 Day 8 worksheet Tue Oct 3, 2017

@Override
public int compareTo(Card other) {

// compare cards by their rank
// the integer value of this.rank can be obtained
// as this.rank.ordinal()

// note that the suit is not used in the comparison so
// comparing the queen of hearts and the queen of diamonds
// would return zero
return Integer.compare(this.rank.ordinal(), other.rank.ordinal());

}
}

Page 2



EECS2030 Day 8 worksheet Tue Oct 3, 2017

2. compareTo contract

Consider your compareTo method for Shoe:

(a) Shoe x = new Shoe(8); // size 8
Shoe y = new Shoe(11); // size 11

What is the sign of:

i. x.compareTo(y)

Solution: negative

ii. y.compareTo(x)

Solution: positive

(b) Shoe x = new Shoe(7); // size 7
Shoe y = new Shoe(4); // size 4

What is the sign of:

i. x.compareTo(y)

Solution: positive

ii. y.compareTo(x)

Solution: negative

(c) Shoe x = new Shoe(7); // size 7
Shoe y = new Shoe(7); // size 7

What is the value of:

i. x.compareTo(y)

Solution: zero

ii. y.compareTo(x)

Solution: zero

(d) Analyze your answers for parts (a)–(c); does your compareTo method satisfy Part 1 of the com-
pareTo contract?

Solution: Yes, the signs of the returned values flip when the order of the two compared objects
are reversed.

Page 3



EECS2030 Day 8 worksheet Tue Oct 3, 2017

(e) Shoe x = new Shoe(8); // size 8
Shoe y = new Shoe(8); // size 8
Shoe z = new Shoe(10); // size 10

What is the sign of:

i. x.compareTo(y)

Solution: zero (the question should be what is the value of x.compareTo(y))

ii. x.compareTo(z)

Solution: negative

iii. y.compareTo(z)

Solution: negative

(f) Shoe x = new Shoe(8); // size 8
Shoe y = new Shoe(8); // size 8
Shoe z = new Shoe(4); // size 4

What is the sign of:

i. x.compareTo(y)

Solution: zero (the question should be what is the value of x.compareTo(y))

ii. x.compareTo(z)

Solution: positive

iii. y.compareTo(z)

Solution: positive

(g) Does your compareTo method satisfy Part 3 of the compareTo contract?

Solution: Yes, the signs of x.compareTo(z) and y.compareTo(z) are the same.

Page 4



EECS2030 Day 8 worksheet Tue Oct 3, 2017

3. Static fields

Modify the Shoe class shown below so that it keeps track of the number of shoes created. Make sure
that a client is able to obtain the number of shoes created.

public class Shoe {
private int size;

private static int numberOfShoes = 0;

public Shoe() {
this.size = 8;
Shoe.numberOfShoes++;

}

public Shoe(int size) {
// possibly validate size here
this.size = size;
Shoe.numberOfShoes++;

}

public Shoe(Shoe other) {
this(other.size); // constructor chain
// don't increment Shoe.numberOfShoes here!
// the chained constructor already increments the number of shoes

}

public static int getNumberOfShoes() {
return Shoe.numberOfShoes;

}

}

Page 5


