
EECS2030 Day 06 Tue Sep 26, 2017

1. hashCode

(a) Consider the following hashCode method for SimplePoint2:

@Override
public int hashCode() {

return (int) (10 * this.x) + (int) (this.y);
}

Compute the hash code for the following SimplePoint2 objects:

SimplePoint2 p1 = new SimplePoint2(0f, 0f);

SimplePoint2 p2 = new SimplePoint2(-5.1f, -2f);

SimplePoint2 p3 = new SimplePoint2(0f, 87.5f);

SimplePoint2 p4 = new SimplePoint2(-6.5f, 60f);

SimplePoint2 p5 = new SimplePoint2(1.9f, 1.5f);

Solution: Remember that casting a double value to an int simply discards everything after the
decimal.

0 + 0 = 0

-51 - 2 = -53

0 + 87 = 87

-65 + 60 = -5

19 + 1 = 20

(b) Draw a hash table having 10 buckets. Label the buckets 0 through 9.

Solution:

0 1 2 3 4 5 6 7 8 9

(c) Suppose that the hash table uses the following method to compute the bucket number:

private int bucket(Object obj) {
int hash = obj.hashCode();
return (int) (Math.abs(hash) / 10);
// NOTE: This is not a general purpose algorithm for computing
// a bucket number.

}

EECS2030 Day 06 Tue Sep 26, 2017

Fill in the hash table with the labels p1, p2, p3, p4, p5 indicating which buckets the points from
Question 1(a) are placed into.

Solution:

p1 p5 p2 p3
p4

0 1 2 3 4 5 6 7 8 9

Page 2

EECS2030 Day 06 Tue Sep 26, 2017

2. Information hiding

Consider the following implementation of class that represents time on a 24-hour clock:

public class HourMin {
private int hour; // between 0 and 23
private int minute; // between 0 and 59

public HourMin(String time) { // assumes strings like "15:35"
String parts[] = time.split(":");
int hour = Integer.parseInt(parts[0]);
int minute = Integer.parseInt(parts[1]);
this.setHour(hour);
this.setMinute(minute);

}

public final int getHour() { // returns a value between 0 and 23
return this.hour;

}

public final int getMinute() { // returns a value between 0 and 59
return this.minute;

}

public final void setHour(int hour) {
this.hour = hour; // precondition: hour is between 0 and 23

}

public final void setMinute(int minute) {
this.minute = minute; // precondition: minute is between 0 and 59

}

public String toString() {
return this.getHour() + ":" + this.getMinute();

}
}

Suppose we change the implementation so that we use only one field minuteFromMidnight equal
to the number of minutes from midnight. Which of the following features of the class do we have to
change when we modify the implementation? (check all that need to change):

-the constructor

-getHour()

-getMinute()

-setHour(int)

-setMinute(int)

-toString()

Page 3

EECS2030 Day 06 Tue Sep 26, 2017

Solution: Any constructor or method that uses a field directly will be affected:

-the constructor X

-getHour() X

-getMinute() X

-setHour(int) X

-setMinute(int) X

-toString()

Page 4

EECS2030 Day 06 Tue Sep 26, 2017

3. Information hiding

Re-implement HourMin so that it uses a single field minuteFromMidnight equal to the number of
minutes from midnight.

public class HourMin {
private int minuteFromMidnight;

public HourMin(String time) { // assumes strings like "15:35"
String parts[] = time.split(":");
int hour = Integer.parseInt(parts[0]);
int minute = Integer.parseInt(parts[1]);

this.minuteFromMidnight = 60 * hour + minute;

}

public final int getHour() { // returns a value between 0 and 23

return this.minuteFromMidnight / 60;

}

public final int getMinute() { // returns a value between 0 and 59

return this.minuteFromMidnight % 60;

}

public final void setHour(int hour) {
// precondition: hour is between 0 and 23

int minute = this.getMinute(); // get the current minute
this.minuteFromMidnight = 60 * hour + minute;

}

public final void setMinute(int minute) {
// precondition: minute is between 0 and 59

int hour = this.getHour(); // get the current hour
this.minuteFromMidnight = 60 * hour + minute;

}

public String toString() {
return this.getHour() + ":" + this.getMinute();

}
}

4. Immutability

Immutability has many advantages but it has some disadvantages, too. Consider the following method

Page 5

EECS2030 Day 06 Tue Sep 26, 2017

in Point2 (which is mutable) that moves the point by an amount dx in the x direction and an amount
dy in the y direction:

public class Point2 {
private double x;
private double y;

// constructors and other methods not shown

public void move(double dx, double dy) {
this.x += dx;
this.y += dy;

}
}

We cannot add an identical method to IPoint2 because IPoint2 objects are immutable. The best we
can do is to add a method that returns a new IPoint2 object with the desired coordinates. Implement
such a method for IPoint2:

public class IPoint2 {
private final double x;
private final double y;

// constructors and other methods not shown

// Returns a new point whose coordinates are equal to
// this point shifted by dx and dy.
public IPoint2 moveCopy(double dx, double dy) {

return new IPoint2(this.x + dx, this.y + dy);

}
}

Why is the method named moveCopy instead of simply move?

Solution: Because a method named move already exists with the same signature.

Page 6

EECS2030 Day 06 Tue Sep 26, 2017

5. Class invariants Examine your answer for Question 3.

(a) What are the class invariants for HourMin? Your answer should involve conditions on the value
of minuteFromMidnight.

Solution:

this.minuteFromMidnight >= 0
this.minuteFromMidnight < 60 * 24

(b) Which of the following features of the class do we have to change to ensure that the class invariants
are always true? (check all that need to change):

-the constructor

-getHour()

-getMinute()

-setHour(int)

-setMinute(int)

-toString()

Solution: Any constructor or method that changes this.minuteFromMidnightmight have
to validate its arguments:

-the constructor X

-getHour()

-getMinute()

-setHour(int)X

-setMinute(int)X

-toString()

(c) For each feature you checked in Part (b), what needs to change to to ensure that the class invariants
are always true?

Solution: The constructor must validate the given hour and minute.

setHour must validate the given hour to ensure that hour >=0 && hour < 24 is true

Page 7

EECS2030 Day 06 Tue Sep 26, 2017

setMinute must validate the given minute to ensure that minute >=0 && minute < 60
is true

(d) Bonus question: How can you minimize the amount of code duplication when you implement the
changes you described in Part (c)?

Solution: Implement a private method named set:

private void set(int hour, int minute) {
if (hour < 0 || hour > 23) {

throw new IllegalArgumentException("bad hour");
}
if (minute < 0 || minute > 59) {

throw new IllegalArgumentException("bad minute");
}
this.minuteFromMidnight = 60 * hour + minute;

}

The constructor, setHour, and setMinute can all use set.

Page 8

