
EECS2030 Day 4 worksheet Thu Sep 21, 2017

1. Choosing fields For each of the following kinds of values, choose appropriate fields to represent the
value (imagine you are trying to implement a class that represents the value). Try to come up with two
alternate sets of fields that could represent each kind of value.

(a) weight

Solution: There are many possible solutions; two are given below.

(a) for weights in kilograms:
double kilos;

(b) for weights in some arbitrary unit:
double quantity;
String units; // but a Units class would be better than String

(b) temperature

Solution: There are many possible solutions; two are given below.

(a) for temperatures in degrees Celcius:
double degreesC;

(b) for temperature in some arbitrary unit:
double degrees;
String units; // but a Units class would be better than String

(c) time of the day

Solution: There are many possible solutions; two are given below.

(a) for hours and minutes:
int hour;
int minutes;

(b) for minutes after midnight:
int minutesFromMidnight;

(d) day of the year

Solution: There are many possible solutions; two are given below.

(a) for days from January 1:
int day;

(b) for month and day:
int month; // or String or a Month class
int dayOfMonth;

2. Default constructor

(a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Imple-
ment a default (no argument) constructor.

EECS2030 Day 4 worksheet Thu Sep 21, 2017

Solution:

public class Temperature {
private double degC;

public Temperature() {
this.degC = 0.0; // 0 degrees Celcius

}
}

(b) Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a
default (no argument) constructor.

Solution:

public class TimeOfDay {
private int hour; // 24-hour clock: 0 <= hour <= 23
private int minute; // 24-hour clock: 0 <= minute <= 59

public TimeOfDay() {
this.hour = 0; // midnight
this.minute = 0;

}
}

Page 2

EECS2030 Day 4 worksheet Thu Sep 21, 2017

3. Custom constructor

(a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Imple-
ment a custom constructor that initializes the temperature given a value in degrees Celcius.

Solution:

public class Temperature {
private double degC;

public Temperature(double degC) {
// physics students: should you validate degC?
this.degC = degC;

}
}

(b) Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a
custom constructor that initializes a time given an hour and a minute.

Solution:

public class TimeOfDay {
private int hour; // 24-hour clock: 0 <= hour <= 23
private int minute; // 24-hour clock: 0 <= minute <= 59

public static final int MIN_HOUR = 0;
public static final int MAX_HOUR = 23;
public static final int MIN_MINUTE = 0;
public static final int MAX_MINUTE = 59;

public TimeOfDay(int hour, int minute) {
if (hour < MIN_HOUR || hour > MAX_HOUR) {

throw new IllegalArgumentException("bad hour");
}
if (minute < MIN_MINUTE || minute > MAX_MINUTE) {

throw new IllegalArgumentException("bad minute");
}
this.hour = hour;
this.minute = minute;

}
}

4. Copy constructor

(a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Imple-
ment a copy constructor that initializes the temperature given another Temperature reference.

Solution:

public class Temperature {

Page 3

EECS2030 Day 4 worksheet Thu Sep 21, 2017

private double degC;

public Temperature(Temperature other) {
this.degC = other.degC;

}
}

(b) Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a
copy constructor that initializes a time given another TimeOfDay reference.

Solution:

public class TimeOfDay {
private int hour; // 24-hour clock: 0 <= hour <= 23
private int minute; // 24-hour clock: 0 <= minute <= 59

public static final int MIN_HOUR = 0;
public static final int MAX_HOUR = 23;
public static final int MIN_MINUTE = 0;
public static final int MAX_MINUTE = 59;

public TimeOfDay(TimeOfDay other) {
this.hour = other.hour;
this.minute = other.minute;

}
}

Page 4

EECS2030 Day 4 worksheet Thu Sep 21, 2017

5. Implement a set method

(a) Suppose that a Temperature is represented as a floating point value in degrees Celcius. Imple-
ment a set method that sets the value of a temperature given a value in degrees Celcius.

Solution:

public class Temperature {
private double degC;

public void set(double degC) {
this.degC = degC;

}
}

(b) Suppose that a TimeOfDay is represented as an integer hour and an integer minute. Implement a
set method that sets the value of a time given an hour and a minute.

Solution:

public class TimeOfDay {
private int hour; // 24-hour clock: 0 <= hour <= 23
private int minute; // 24-hour clock: 0 <= minute <= 59

public static final int MIN_HOUR = 0;
public static final int MAX_HOUR = 23;
public static final int MIN_MINUTE = 0;
public static final int MAX_MINUTE = 59;

public void set(int hour, int minute) {
if (hour < MIN_HOUR || hour > MAX_HOUR) {

throw new IllegalArgumentException("bad hour");
}
if (minute < MIN_MINUTE || minute > MAX_MINUTE) {

throw new IllegalArgumentException("bad minute");
}
this.hour = hour;
this.minute = minute;

}
}

6. toString

Implement a toString method for Temperature and TimeOfDay.

Solution: The implementation of toString will depend on what you decide the string represen-
tation of a temperature or time of day should look like. The solutions below illustrate only one
possible implementation for each class.

public class Temperature {

Page 5

EECS2030 Day 4 worksheet Thu Sep 21, 2017

private double degC;

@Override
public String toString() {

return this.degC + " degrees Celcius";
}

}

Solution:

public class TimeOfDay {
private int hour; // 24-hour clock: 0 <= hour <= 23
private int minute; // 24-hour clock: 0 <= minute <= 59

public static final int MIN_HOUR = 0;
public static final int MAX_HOUR = 23;
public static final int MIN_MINUTE = 0;
public static final int MAX_MINUTE = 59;

@Override
public String toString() {

if (this.minute < 10) {
// add a zero in front of the single digit minute
return this.hour + ":0" + this.minute;

}
return this.hour + ":" + this.minute;

}
}

Page 6

EECS2030 Day 4 worksheet Thu Sep 21, 2017

7. equals

Consider a Card class that represents a standard playing card. Every Card object has a Rank and a
Suit. Complete the equals method for Card. You may assume that the Rank and Suit classes both
have an equals method.

public class Card implements Comparable<Card> {

private Rank rank;
private Suit suit;

/**
* Compares this playing card to the specified object. The result

* is <code>true</code> if and only if the argument is a

* <code>Card</code> with the same rank and suit as this card.

*
* @param obj

* The object to compare this Card against.

* @return true if the given object is a

* Card equal to this playing card,

* false otherwise.

*/
@Override
public boolean equals(Object obj) {

if (this == obj) { // is this Card and obj the same object?
return true;

}
if (obj == null) { // equals(null) is always false

return false;
}
if (getClass() != obj.getClass()) { // is obj a Card?

return false;
}
Card other = (Card) obj; // cast obj to a Card

// only now can you compare the ranks and suits
return this.getRank().equals(other.getRank()) &&

this.getSuit().equals(other.getSuit());
}

}

Page 7

