
Divide and Conquer
 divide and conquer algorithms typically recursively 

divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly
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Merge Sort
 merge sort is a divide and conquer algorithm that sorts 

a list of numbers by recursively splitting the list into 
two halves
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 the split lists are then merged into sorted sub-lists
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Merging Sorted Sub-lists
 two sub-lists of length 1
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LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists
 two sub-lists of length 2
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LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0 ) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists
 two sub-lists of length 4

8

left right

result
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84 61 3 72 5



Simplified Complexity Analysis
 in the worst case merging a total of n elements 

requires
n – 1 comparisons  +

n copies

= 2n – 1 total operations

 the worst-case complexity of merging is the order of 
O(n)
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Informal Analysis of Merge Sort
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists
 this takes  2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)
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Solving the Recurrence Relation
T(n)  2T(n/2) + O(n) T(n) approaches...

 2T(n/2) + n

= 2[ 2T(n/4) + n/2 ] + n

= 4T(n/4) + 2n

= 4[ 2T(n/8) + n/4 ] + 2n

= 8T(n/8) + 3n

= 8[ 2T(n/16) + n/8 ] + 3n

= 16T(n/16) + 4n

= 2
kT(n/2k) + kn
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Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence

 we have T(n/2k) on the right-hand side, so we need to find 
some value of k such that

n/2k = 1  2
k = n k = log2(n)
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Solving the Recurrence Relation
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𝑇 𝑛 = 2log2 𝑛 𝑇 Τ𝑛 2log2 𝑛 + 𝑛 log2 𝑛

= 𝑛 𝑇 1 + 𝑛 log2 𝑛
= 𝑛 + 𝑛 log2 𝑛
∈ 𝑂(𝑛 log2 𝑛)



Quicksort
 quicksort, like mergesort, is a divide and conquer 

algorithm for sorting a list or array

 it can be described recursively as follows:

1. choose an element, called the pivot, from the list

2. reorder the list so that:

 values less than the pivot are located before the pivot

 values greater than the pivot are located after the pivot

3. quicksort the sublist of elements before the pivot

4. quicksort the sublist of elements after the pivot
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Quicksort
 step 2 is called the partition step

 consider the following list of unique elements

 assume that the pivot is 6
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0 8 7 6 4 3 5 1 2 9



Quicksort
 the partition step reorders the list so that:

 values less than the pivot are located before the pivot

 we need to move the cyan elements before the pivot

 values greater than the pivot are located after the pivot

 we need to move the red elements after the pivot
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0 9 7 6 4 3 5 1 2 8

0 9 7 6 4 3 5 1 2 8



Quicksort
 can you describe an algorithm to perform the 

partitioning step?

 talk amongst yourselves here
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Quicksort
 after partitioning the list looks like:

 partioning has 3 results:

 the pivot is in its correct final sorted location

 the left sublist contains only elements less than the pivot

 the right sublist contains only elements greater than the 
pivot
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Quicksort
 after partitioning we recursively quicksort the left 

sublist

 for the left sublist, let's assume that we choose 4 as the 
pivot

 after partitioning the left sublist we get:

 we then recursively quicksort the left and right sublists

 and so on...

19

0 2 1 3 4 5 6 7 9 8



Quicksort
 eventually, the left sublist from the first pivoting 

operation will be sorted; we then recursively quicksort 
the right sublist:

 if we choose 8 as the pivot and partition we get:

 the left and right sublists have size 1 so there is nothing 
left to do
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0 1 2 3 4 5 6 7 9 8

0 1 2 3 4 5 6 7 8 9



Quicksort
 the computational complexity of quicksort depends 

on:

 the computational complexity of the partition operation

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛

 how the pivot is chosen
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Quicksort
 let's assume that when we choose a pivot we always 

choose the smallest (or largest) value in the sublist

 yields a sublist of size (𝑛 − 1) which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above

 then the recurrence relation is:

 solving the recurrence results in
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𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

same as selection sort



Quicksort
 let's assume that when we choose a pivot we always 

choose the median value in the sublist

 yields 2 sublists of size 𝑛

2
which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to 
quicksort a list of size 𝑛 when choosing a pivot as 
described above

 then the recurrence relation is:

 solving the recurrence results in
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𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛)

same as merge sort



 what is the fastest way to sort a deck of playing cards?

 what is the big-O complexity?

 talk amongst ourselves here….

24



Proving correctness and terminaton
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Proving Correctness and Termination
 to show that a recursive method accomplishes its goal 

you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates
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Proving Correctness
 to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then 
prove that each recursive case is correct
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printItToo

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);

}

}
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Correctness of printItToo
1. (prove the base case) If n == 0 nothing is printed; 

thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string 
s exactly(n – 1) times. Then the recursive case 
prints the string s exactly(n – 1)+1 = n times; 
thus the recursive case is correct.
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Proving Termination
 to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a 
non-negative integer number

2. prove that each recursive invocation has a smaller size 
than the original invocation
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Termination of printItToo
1. printItToo(s, n) prints n copies of the string s; 

define the size of printItToo(s, n) to be n

2. The size of the recursive invocation
printItToo(s, n-1) is n-1 (by definition) 
which is smaller than the original size n.
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countZeros
public static int countZeros(long n) {

if(n == 0L) {  // base case 1

return 1;

}

else if(n < 10L) {  // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}
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Correctness of countZeros
1. (base cases) If the number has only one digit then 

the method returns 1 if the digit is zero and 0 if the 
digit is not zero; therefore, the base case is correct.

2. (recursive cases)  Assume that 
countZeros(n/10L) is correct (it returns the 
number of zeros in the first (d – 1) digits of n). 

There are two recursive cases:
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Correctness of countZeros
a. If the last digit in the number is zero, then the 

recursive case returns 1 + the number of zeros in 
the first (d – 1) digits of n, which is correct.

b. If the last digit in the number is one, then the 
recursive case returns the number of zeros in the first 
(d – 1) digits of n, which is correct.
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Termination of countZeros
1. Let the size of countZeros(n) be d the number of 

digits in the number n.

2. The size of the recursive invocation 
countZeros(n/10L) is d-1, which is smaller than 
the size of the original invocation.
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Selection Sort
public class Recursion {

// minToFront not shown

public static void selectionSort(List<Integer> t) {

if (t.size() > 1) {                                                                     

Recursion.minToFront(t);                                                    

Recursion.selectionSort(t.subList(1, t.size()));                   

}

}

}
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Prove that selection sort is correct and terminates.



Proving Termination
 prove that the algorithm on the next slide terminates
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public class Print {

public static void done(int n) {

if (n == 1) {

System.out.println("done");

}

else if (n % 2 == 0) {

System.out.println("not done");

Print.done(n / 2);

}

else {

System.out.println("not done");

Print.done(3 * n + 1);

}

}

}


