Divide and Conquer

 divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

Merge Sort

 merge sort is a divide and conquer algorithm that sorts a list of numbers by recursively splitting the list into two halves

the split lists are then merged into sorted sub-lists

Merging Sorted Sub-lists

two sub-lists of length 1

comparison
 copies

LinkedList<Integer> result = new LinkedList<Integer>();

```
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
  result.add(fL);
  left.removeFirst();
}
else {
  result.add(fR);
  right.removeFirst();
}
if (left.isEmpty()) {
  result.addAll(right);
}
else {
  result.addAll(left);
}
```

Merging Sorted Sub-lists

two sub-lists of length 2

2 3 4 5	2	3	4	5
---------	---	---	---	---

3 comparisons4 copies

LinkedList<Integer> result = new LinkedList<Integer>();

```
while (left.size() > 0 && right.size() > 0 ) {
  int fL = left.getFirst();
  int fR = right.getFirst();
  if (fL < fR) {
    result.add(fL);
    left.removeFirst();
  }
  else {
    result.add(fR);
    right.removeFirst();
  }
}
if (left.isEmpty()) {
  result.addAll(right);
}
else {
  result.addAll(left);
}
```

Merging Sorted Sub-lists

two sub-lists of length 4

5 comparisons 8 copies

Simplified Complexity Analysis

- in the worst case merging a total of n elements requires
 - n 1 comparisons +
 - n copies
 - = 2n 1 total operations
- the worst-case complexity of merging is the order of O(n)

Informal Analysis of Merge Sort

- suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
 - ▶ let the function be *T*(*n*)
- merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
 - this takes 2T(n/2) running time
- then the sub-lists are merged
 - this takes O(n) running time
- total running time T(n) = 2T(n/2) + O(n)

Solving the Recurrence Relation

- T(n)2T(n/2) + O(n) \rightarrow
 - \approx **2***T*(*n*/**2**) + *n*
 - 2[2T(n/4) + n/2] + n=
 - 4T(n/4) + 2n=
 - 4[2T(n/8) + n/4] + 2n=
 - 8T(n/8) + 3n=
 - 8[2T(n/16) + n/8] + 3n=
 - 16T(n/16) + 4n= $2^{k}T(n/2^{k}) + kn$

T(n) approaches...

Solving the Recurrence Relation

$$T(n) = 2^k T(n/2^k) + kn$$

- for a list of length 1 we know T(1) = 1
 - if we can substitute T(1) into the right-hand side of T(n) we might be able to solve the recurrence
 - we have T(n/2^k) on the right-hand side, so we need to find some value of k such that

$$n/2^k = 1 \implies 2^k = n \implies k = \log_2(n)$$

Solving the Recurrence Relation

$$T(n) = 2^{\log_2 n} T(n/2^{\log_2 n}) + n \log_2 n$$

= $n T(1) + n \log_2 n$
= $n + n \log_2 n$
 $\in O(n \log_2 n)$

- quicksort, like mergesort, is a divide and conquer algorithm for sorting a list or array
- it can be described recursively as follows:
 - 1. choose an element, called the *pivot*, from the list
 - 2. reorder the list so that:
 - values less than the pivot are located before the pivot
 - values greater than the pivot are located after the pivot
 - 3. quicksort the sublist of elements before the pivot
 - 4. quicksort the sublist of elements after the pivot

- step 2 is called the *partition* step
- consider the following list of unique elements

0	8	7	6	4	3	5	1	2	9
---	---	---	---	---	---	---	---	---	---

• assume that the pivot is 6

- the partition step reorders the list so that:
 - values less than the pivot are located before the pivot
 - we need to move the cyan elements before the pivot

- values greater than the pivot are located after the pivot
 - we need to move the red elements after the pivot

- can you describe an algorithm to perform the partitioning step?
 - talk amongst yourselves here

• after partitioning the list looks like:

- partioning has 3 results:
 - the pivot is in its correct final sorted location
 - the left sublist contains only elements less than the pivot
 - the right sublist contains only elements greater than the pivot

- after partitioning we recursively quicksort the left sublist
- for the left sublist, let's assume that we choose 4 as the pivot
 - after partitioning the left sublist we get:

we then recursively quicksort the left and right sublists
 and so on...

• eventually, the left sublist from the first pivoting operation will be sorted; we then recursively quicksort the right sublist:

• if we choose 8 as the pivot and partition we get:

the left and right sublists have size 1 so there is nothing left to do

- the computational complexity of quicksort depends on:
 - the computational complexity of the partition operation
 - without proof I claim that this is O(n) for a list of size n
 - how the pivot is chosen

- let's assume that when we choose a pivot we always choose the smallest (or largest) value in the sublist
 - yields a sublist of size (n 1) which we recursively quicksort
- let T(n) be the number of operations needed to quicksort a list of size n when choosing a pivot as described above
 - then the recurrence relation is:

T(n) = T(n-1) + O(n) same as selection sort

solving the recurrence results in

 $T(n) = O(n^2)$

- let's assume that when we choose a pivot we always choose the median value in the sublist
 - yields 2 sublists of size $\left(\frac{n}{2}\right)$ which we recursively quicksort
- let T(n) be the number of operations needed to quicksort a list of size n when choosing a pivot as described above
 - then the recurrence relation is:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$
 same as merge sort

solving the recurrence results in

 $T(n) = O(n \log_2 n)$

- what is the fastest way to sort a deck of playing cards?
- what is the big-O complexity?
- talk amongst ourselves here....

Proving correctness and terminaton

Proving Correctness and Termination

- to show that a recursive method accomplishes its goal you must prove:
 - 1. that the base case(s) and the recursive calls are correct
 - 2. that the method terminates

Proving Correctness

- to prove correctness:
 - 1. prove that each base case is correct
 - 2. assume that the recursive invocation is correct and then prove that each recursive case is correct

printltToo

```
public static void printItToo(String s, int n) {
  if (n == 0) {
    return;
  }
  else {
    System.out.print(s);
    printItToo(s, n - 1);
  }
}
```

Correctness of printltToo

- (prove the base case) If n == 0 nothing is printed; thus the base case is correct.
- Assume that printItToo(s, n-1) prints the string s exactly (n - 1) times. Then the recursive case prints the string s exactly (n - 1)+1 = n times; thus the recursive case is correct.

Proving Termination

- to prove that a recursive method terminates:
 - define the size of a method invocation; the size must be a non-negative integer number
 - 2. prove that each recursive invocation has a smaller size than the original invocation

Termination of printltToo

- 1. printItToo(s, n) prints n copies of the string s; define the size of printItToo(s, n) to be n
- 2. The size of the recursive invocation printItToo(s, n-1) is n-1 (by definition) which is smaller than the original size n.

countZeros

public static int countZeros(long n) {

```
if (n == 0L) \{ // base case 1 \}
  return 1;
}
else if(n < 10L) { // base case 2</pre>
  return 0;
}
boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
  return 1 + countZeros(m);
}
else {
  return countZeros(m);
}
```

}

Correctness of countZeros

- (base cases) If the number has only one digit then the method returns 1 if the digit is zero and 0 if the digit is not zero; therefore, the base case is correct.
- 2. (recursive cases) Assume that
 countZeros (n/10L) is correct (it returns the number of zeros in the first (d 1) digits of n).

There are two recursive cases:

Correctness of countZeros

- a. If the last digit in the number is zero, then the recursive case returns 1 + the number of zeros in the first (d 1) digits of n, which is correct.
- b. If the last digit in the number is one, then the recursive case returns the number of zeros in the first (d 1) digits of n, which is correct.

Termination of countZeros

- 1. Let the size of **countZeros** (n) be **d** the number of digits in the number **n**.
- The size of the recursive invocation
 countZeros (n/10L) is d-1, which is smaller than the size of the original invocation.

Selection Sort

public class Recursion {

// minToFront not shown

public static void selectionSort(List<Integer> t) {

```
if (t.size() > 1) {
```

Recursion.*minToFront*(t);

```
Recursion.selectionSort(t.subList(1, t.size()));
```

Prove that selection sort is correct and terminates.

}

}

Proving Termination

Prove that the algorithm on the next slide terminates

public class Print {

```
public static void done(int n) {
 if (n == 1) {
  System.out.println("done");
 else if (n % 2 == 0) {
  System.out.println("not done");
  Print.done(n / 2);
 }
 else {
  System.out.println("not done");
  Print.done(3 * n + 1);
```

}