
Divide and Conquer
 divide and conquer algorithms typically recursively

divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

1

Merge Sort
 merge sort is a divide and conquer algorithm that sorts

a list of numbers by recursively splitting the list into
two halves

2

12 74 5 63 8

17 6824 53

254 3 1678

4 3 25 78 16

 the split lists are then merged into sorted sub-lists

3

4 3 25 78 16

523 4 6187

86 7152 43

84 61 3 72 5

Merging Sorted Sub-lists
 two sub-lists of length 1

4

4 3

left right

result

3 4

1 comparison
2 copies

5

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 2

6

43

left right

result

3 4

3 comparisons
4 copies

52

2 5

7

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 4

8

left right

result

5 comparisons
8 copies

86 7152 43

84 61 3 72 5

Simplified Complexity Analysis
 in the worst case merging a total of n elements

requires
n – 1 comparisons +

n copies

= 2n – 1 total operations

 the worst-case complexity of merging is the order of
O(n)

9

Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort

 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged

 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

10

Solving the Recurrence Relation
T(n)  2T(n/2) + O(n) T(n) approaches...

 2T(n/2) + n

= 2[2T(n/4) + n/2] + n

= 4T(n/4) + 2n

= 4[2T(n/8) + n/4] + 2n

= 8T(n/8) + 3n

= 8[2T(n/16) + n/8] + 3n

= 16T(n/16) + 4n

= 2
kT(n/2k) + kn

11

Solving the Recurrence Relation
T(n) = 2

kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1

 if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

 we have T(n/2k) on the right-hand side, so we need to find
some value of k such that

n/2k = 1  2
k = n k = log2(n)

12

Solving the Recurrence Relation

13

𝑇 𝑛 = 2log2 𝑛 𝑇 Τ𝑛 2log2 𝑛 + 𝑛 log2 𝑛

= 𝑛 𝑇 1 + 𝑛 log2 𝑛
= 𝑛 + 𝑛 log2 𝑛
∈ 𝑂(𝑛 log2 𝑛)

Quicksort
 quicksort, like mergesort, is a divide and conquer

algorithm for sorting a list or array

 it can be described recursively as follows:

1. choose an element, called the pivot, from the list

2. reorder the list so that:

 values less than the pivot are located before the pivot

 values greater than the pivot are located after the pivot

3. quicksort the sublist of elements before the pivot

4. quicksort the sublist of elements after the pivot

14

Quicksort
 step 2 is called the partition step

 consider the following list of unique elements

 assume that the pivot is 6

15

0 8 7 6 4 3 5 1 2 9

Quicksort
 the partition step reorders the list so that:

 values less than the pivot are located before the pivot

 we need to move the cyan elements before the pivot

 values greater than the pivot are located after the pivot

 we need to move the red elements after the pivot

16

0 9 7 6 4 3 5 1 2 8

0 9 7 6 4 3 5 1 2 8

Quicksort
 can you describe an algorithm to perform the

partitioning step?

 talk amongst yourselves here

17

Quicksort
 after partitioning the list looks like:

 partioning has 3 results:

 the pivot is in its correct final sorted location

 the left sublist contains only elements less than the pivot

 the right sublist contains only elements greater than the
pivot

18

0 2 1 5 4 3 6 7 9 8

Quicksort
 after partitioning we recursively quicksort the left

sublist

 for the left sublist, let's assume that we choose 4 as the
pivot

 after partitioning the left sublist we get:

 we then recursively quicksort the left and right sublists

 and so on...

19

0 2 1 3 4 5 6 7 9 8

Quicksort
 eventually, the left sublist from the first pivoting

operation will be sorted; we then recursively quicksort
the right sublist:

 if we choose 8 as the pivot and partition we get:

 the left and right sublists have size 1 so there is nothing
left to do

20

0 1 2 3 4 5 6 7 9 8

0 1 2 3 4 5 6 7 8 9

Quicksort
 the computational complexity of quicksort depends

on:

 the computational complexity of the partition operation

 without proof I claim that this is 𝑂(𝑛) for a list of size 𝑛

 how the pivot is chosen

21

Quicksort
 let's assume that when we choose a pivot we always

choose the smallest (or largest) value in the sublist

 yields a sublist of size (𝑛 − 1) which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

22

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛2)

same as selection sort

Quicksort
 let's assume that when we choose a pivot we always

choose the median value in the sublist

 yields 2 sublists of size 𝑛

2
which we recursively quicksort

 let 𝑇(𝑛) be the number of operations needed to
quicksort a list of size 𝑛 when choosing a pivot as
described above

 then the recurrence relation is:

 solving the recurrence results in

23

𝑇 𝑛 = 2𝑇 𝑛
2
+ 𝑂(𝑛)

𝑇 𝑛 = 𝑂(𝑛 log2 𝑛)

same as merge sort

 what is the fastest way to sort a deck of playing cards?

 what is the big-O complexity?

 talk amongst ourselves here….

24

Proving correctness and terminaton

25

Proving Correctness and Termination
 to show that a recursive method accomplishes its goal

you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates

26

Proving Correctness
 to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then
prove that each recursive case is correct

27

printItToo

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);

}

}

28

Correctness of printItToo
1. (prove the base case) If n == 0 nothing is printed;

thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string
s exactly(n – 1) times. Then the recursive case
prints the string s exactly(n – 1)+1 = n times;
thus the recursive case is correct.

29

Proving Termination
 to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

2. prove that each recursive invocation has a smaller size
than the original invocation

30

Termination of printItToo
1. printItToo(s, n) prints n copies of the string s;

define the size of printItToo(s, n) to be n

2. The size of the recursive invocation
printItToo(s, n-1) is n-1 (by definition)
which is smaller than the original size n.

31

countZeros
public static int countZeros(long n) {

if(n == 0L) { // base case 1

return 1;

}

else if(n < 10L) { // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}

32

Correctness of countZeros
1. (base cases) If the number has only one digit then

the method returns 1 if the digit is zero and 0 if the
digit is not zero; therefore, the base case is correct.

2. (recursive cases) Assume that
countZeros(n/10L) is correct (it returns the
number of zeros in the first (d – 1) digits of n).

There are two recursive cases:

33

Correctness of countZeros
a. If the last digit in the number is zero, then the

recursive case returns 1 + the number of zeros in
the first (d – 1) digits of n, which is correct.

b. If the last digit in the number is one, then the
recursive case returns the number of zeros in the first
(d – 1) digits of n, which is correct.

34

Termination of countZeros
1. Let the size of countZeros(n) be d the number of

digits in the number n.

2. The size of the recursive invocation
countZeros(n/10L) is d-1, which is smaller than
the size of the original invocation.

35

Selection Sort
public class Recursion {

// minToFront not shown

public static void selectionSort(List<Integer> t) {

if (t.size() > 1) {

Recursion.minToFront(t);

Recursion.selectionSort(t.subList(1, t.size()));

}

}

}

36

Prove that selection sort is correct and terminates.

Proving Termination
 prove that the algorithm on the next slide terminates

37

38

public class Print {

public static void done(int n) {

if (n == 1) {

System.out.println("done");

}

else if (n % 2 == 0) {

System.out.println("not done");

Print.done(n / 2);

}

else {

System.out.println("not done");

Print.done(3 * n + 1);

}

}

}

