Arrays

Arrays

» in Java an array is a container object that holds a fixed
number of values of a single type

» the length of an array is established when the array is
created

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays

» to declare an array you use the element type followed
by an empty pair of square brackets

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays

» to create an array you use the new operator followed by
the element type followed by the length of the array in
square brackets

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays

» the number of elements in the array is stored in the
public field named length

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

int n = collection.length;
// the public field length holds the number of elements

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays

» the values in an array are called elements

» the elements can be accessed using a zero-based index
(similar to lists and strings)

Element

First index (at index 8)
\

[6‘1 2 3 4 5 6 ?\a 9 - Indices

AALAAALLE

- Array length is 10 »

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays

» the elements can be accessed using a zero-based index
(similar to lists and strings)

collection[@] = 100.0;
collection[1l] = 100.0;
collection[2] = 100.0;
collection[3] = 100.0;
collection[4] = 100.0;
collection[5] = 100.0;
collection[6] = 100.0;
collection[7] = 100.0;
collection[8] = 100.0;
collection[9] = 100.0; // set all elements to equal 100.0

collection[10] = 100.0; // ArrayIndexOutOfBoundsException

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Computational complexity

Computational complexity

» computational complexity is concerned with
describing the amount of resources needed to run an
algorithm

» for our purposes, the resource is time
» complexity is usually expressed as a function of n the
size of the problem

» the size of the problem is always a non-negative integer
value (i.e., a natural number)

Searching a list

Returns true if the specified array contains the specified value, and false
otherwise.

*

*

*

* @param arr

* an array to search
* @param value

* a value to search for

* @return true if the specified array contains the specified value, and false
* otherwise

public static boolean contains(int[] arr, int value) {
boolean result = false;
for (int i = @; i < arr.length; i++) {

if (arr[i] == value) { size of problem, n, is
result = true; the number of elements
break; in the array arr
}
}
return result;

10

Estimating complexity

» the basic strategy for estimating complexity:

1. for each line of code, estimate its number of elementary
instructions

>. for each line of code, determine how often it is executed
3. determine the total number of elementary instructions

11

Elementary instructions

» what is an elementary instruction?

» for our purposes, any expression that can be computed in a
constant amount of time

» examples:

declaring a variable
assignment (=)

arithmetic (+, -, *, /, %)
comparison (<, >, ==, |=)
Boolean expressions (||, &&, !)
if, else

array access

vV Vv Vv VvV Vv VvV Vv V9

return statement

i
N

Elementary instructions

» loops are technically more complicated, but for our
purposes you can consider for(/* something */)
to be a single elementary operation

» but this is not true if the loop initialization, condition, or
increment expression involves non-elementary operations

13

Estimating complexity

» count the number of elementary operations in each
line of contains

» discuss amongst yourselves...

14

Searching a list

public static boolean contains(int[] arr, int value) {
boolean result = false;
for (int i = @; 1 < arr.length; i++) {
if (arr[i] == value) {
result = true;
break;

}

return result;

15

Estimating complexity

» for each line of code, determine how often it is
executed

16

Searching a list

public static boolean contains(int[] arr, int value) {
boolean result = false;
for (int i = @; 1 < arr.length; i++) {
if (arr[i] == value) {
result = true;
break;

}

return result;

17

Total number of operations

» when counting the total number of operations, we
often consider the worst case scenario

» let’s assume that the lines that might run always run

» multiply the number of elementary operations by the
number of times each line runs

18

Total number of operations

» multiply the number of elementary operations by the
number of times each line runs

19

Searching a list

public static boolean contains(int[] arr, int value) {

boolean result = false; 2 * 1
for (int i = @; 1 < arr.length; i++) { 1 *1
if (arr[i] == value) { 3 *n
result = true; 1 *1
break; 1*1
}
}
return result; 1 *1

20

Running time

» the running time for containsis f(n) =3n+6

21

Big-O notation

» when counting the number of elementary operations
we assumed that all elementary operations would run
in 1 unit of time

» in reality this isn’t true and exactly what constitutes an
elementary operation and how much time each
operation requires depends on many factors

» in our expression f(n) = 3n + 6 the constants 3 and 6
are likely to be inaccurate

» big-O notation describes the complexity of an
algorithm that is insensitive to variations in how
elementary operations are counted

22

Big-O notation

» using big-O notation we say that the complexity of
contains isin O(n)

» more formally, a function f{n) is an element of O(g(n))
if and only if there is a positive real number M and a
real number m such that

| f(n) | < M| g(n) | forall n>m

23

Big-O notation

» Claim: f(n) =3n+6 € 0(n)
» Proof: f(n) =3n+6,g(n) =n

Forn> 1, f(n) > 0and g(n) = 0; therefore, we do not
need to consider the absolute values. We need to find M

and m such that the following is true:

3n+6 < Mn foralln >m

For all n > 1 we have:

3In+6 <9n

~3n+6<9nforalln > 1and f(n) € O(n)

24

Big-O notation

» Proof 2: f(n) =3n+6,g(n) =n
Forn> 1, f(n) > 0and g(n) = 0; therefore, we do not
need to consider the absolute values. We need to find M

and m such that the following is true:

3n+6 < Mnforalln >m

For n > 1 we have:

3In+6 3n+6Nn 9n
< <—<9
n n n

~3n+6<9nforalln > 1and f(n) € O(n)

25

Big-O notation

» the second proof uses the following recipe:
1. Choosem =1
. Assuming n > 1 derive M such that

r@l_ lg@l
g Ig(n)l

» assuming n > 1 implies that 1 < n,n < n% n% < n3,
etc. which means you can replace terms in the
numerator to simplify the expression

=M

26

Big-O notation

» Claim: f(n) = 3n* —n+ 100 € 0(n?)
» Proof:

. Choosem =1

>. Assumen > 1

change to + increase increase
i]
13n% —n + 100| - 3n% +n+ 100 3 3n% +n? + 100n?
|n?| n? n2
104n?

= 104

27

0(1)

» 0(1) describes an algorithm that runs in constant time
» i.e., the run time does not depend on the size of the input
» examples:

» determine if an integer is even or odd
» get for ArraylList
» contains for HashSet

28

O(log, n)

» O(log, n) describes an algorithm whose runtime grows
in proportion to the logarithm of the input size

» i.e., doubling the size of the input increases the runtime by
1 unit of time

» called logarithmic complexity

» examples:
» Arrays.binarySearch (contains fora sorted array)
» contains for TreeSet

29

0O(n)

» O(n) describes an algorithm whose runtime grows in
proportion to the size of the input

» i.e., doubling the input size double the runtime
(approximately)

» called linear complexity
» examples:

» finding the minimum or maximum value in an array or list

» contains for an unsorted array

30

O(nlog, n)

» O(nlog, n) describes an algorithm whose runtime
complexity is slightly greater than linear

» i.e., doubling the size of the input more than doubles the
runtime (approximately)

» called linearithmic complexity
» examples:

» efficient sorting of an array or list

31

0 (n*)

» 0(n?) describes an algorithm whose runtime grows in
proportion to the square of the size of the input

» i.e., doubling the input size quadruples the runtime
(approximately)

» called quadratic complexity
» examples:

» inefficient sorting of an array or list
» checking if everything in one list is in another list

32

0(2™

» O(2™) describes an algorithm whose runtime grows
exponentially with the size of the input

» i.e., increasing the input size by 1 doubles the runtime
(approximately)

» called exponential complexity
» example:

» trying to break a combination lock by trying every possible
combination

33

Comparing Rates of Growth

34

A00

450

400 -

350

300

200 -

200 -

150

100 +

a0 F

O

O™ O(n?)

|] | | | | | |
0] 10 15 20 25 a0 35 40 45 a0

1 O(n logn)

| o)

Comments

» big-O complexity tells you something about the
running time of an algorithm as the size of the input,
n, approaches infinity
» we say that it describes the limiting, or asymptotic, running

time of an algorithm

» for small values of n it is often the case that a less
efficient algorithm (in terms of big-O) will run faster
than a more efficient one

35

Implementing a list

Data Structures

» data structures (and algorithms) are one of the
foundational elements of computer science

» a data structure is a way to organize and store data so
that it can be used efficiently

» list - sequence of elements

» set —a group of unique elements

» map - access elements using a key
» many more...

37

http://en.wikipedia.org/wiki/List_of_data_structures

Implementing a list

» suppose that we wanted to implement our own list-of-
strings class

» we want to use an array to store the string references

» what public features should our class have?

» discuss amongst yourselves here...

Implementing a list

» how does the choice of using an array affect the
implementation of the list features?

» discuss amongst yourselves here...

39

Implementing a list using an array

» the capacity of a list is the maximum number of
elements that the list can hold

» note that the capacity is different than the size

» the size of the list is the number of elements in the list whereas
the capacity is the maximum number of elements that the list can

hold
» the client can specify the capacity using a constructor

» if the clients tries to add more elements than the list
can hold we have to increase the capacity

40

public class StringList {

private String[] elements;
private int capacity;

private int size;

// Initializes an empty list of strings having the given capacity.
public StringList(int capacity) ({

if (capacity < 1) {

throw new
IllegalArgumentException(“capacity must be positive");

}

this.capacity = capacity;

this.size = 0;

this.elements = new String[capacity];

41

Get and set

» to get and set an element at an index we simply get or
set the element in the array at the given index

» because arrays are stored contiguously in memory, this
operation has O(1) complexity (in theory)

42

/**
* Returns the string at the specified position in this 1list.
*
* @param index
* index of the string to return
* @return the string at the specified position in this list

* @throws IndexOutOfBoundsException

* if index is out of range (index is less than zero or
* index is greater than or equal to the size of this list)
*/
public String get(int index) {
if (index < @ || index >= this.size) {
throw new IndexOutOfBoundsException("index: " + index);
}
return this.elements[index];

13

/**

* Replaces the string at the specified position in this list with the

*

specified string.

*

@param index

* index of the element to replace

*

@param element
* string to be stored at the specified position
* @return the string previously at the specified position
*/

public String set(int index, String element) {

String oldElement = this.get(index);

this.elements[index] = element;

return oldElement;

44

Adding to the end of the list

» when we add an element to the end of the list we have

to check if there is room in the array to hold the new
element

» if not then we have to:

1. make a new array with double the capacity of the old array

> copy all of the elements from the old array into the new array
3. add the new element to the new array

» we say that adding to the end of an array-based list
has O(1) amortized complexity

45

/**
* Appends the specified string to the end of this list.
*

* @param element string to be appended to this list
* @return true (consistent with java.util.List)
*/
public boolean add(T element) {
if (this.size == this.capacity) {
this.resize();

}

this.elements[this.size] = element;
this.size++;

return true;

/**
* Creates a new array twice the size of this.elements, and copies
* the references from this.elements to the new array. Assigns the
* new array to this.elements.
*/
private void resize() {
int newCapacity = 2 * this.capacity;
String[] newElements = new String[newCapacity];
for (int i = @; 1 < this.size; i++) {

newElements[i] = this.elements[i];

}
this.capacity = newCapacity;
this.elements = newElements;

47

Inserting in the middle of an array

» when we insert an element into the middle of an array
we have to:

1. check if there is room in the array to hold the new
element

» resize if necessary

». shift the elements from the insertion index to the end of
the array up by one index

3. set the array at the insertion index to the new element

» Step 2 has O(n) complexity

/**
* Inserts the specified string at the specified position in this list.
* Shifts the string currently at that position (if any) and any subsequent
* strings to the right (adds one to their indices).
*
* @param index
* index at which the specified element is to be inserted

*

@param element
* element to be inserted
@throws IndexOutOfBoundsException
* if index is out of range (index is less than zero or index is
* greater than or equal to the size of this list)

*/
public void add(int index, T element) {
if (index < @ || index > this.size) {

throw new IndexOutOfBoundsException("index:

*

+ index);

}
if (this.size == this.capacity) {
this.resize();

}
for (int i = this.size - 1; i >= index; i--) {
this.elements[i + 1] = this.elements[i];

}

this.set(index, element);

49

Other list operations

» removing an element from the end of an array-based
list takes O(1) time

» removing an element from the middle of an array-
based list takes O(n) time

» need to shift all elements from the removal index to the end
of the array down by one index

50

» in most cases you should use an array-based list

» if you find yourself in a situation where most of your
operations require inserting or removing elements
near the front of a list then you should use a different
kind of list

51

52

Recursive Objects

Singly Linked Lists

Recursive Objects

» an object that holds a reference to its own type is a
recursive object

» linked lists and trees are classic examples in computer
science of objects that can be implemented recursively

53

Singly Linked List

» a data structure made up of a sequence of nodes
» each node has

» some data

» afield that contains a reference (a link) to the next node in
the sequence
» suppose we have a linked list that holds characters; a
picture of our linked list would be:

node

—i—
'a' @ > 'X' &=4+—>| 'r' eT—>| 'a' &> 's' ©

data null

54

Singly Linked List

head node
—t—
lal t) IXI ‘_ﬁ |r‘| .__9 lal ‘__9 ISI ‘
data nhull
- |ink

» the first node of the list is called the head node

55

UML Class Diagram

LinkedList
- size : int
- head : Node
Node
- data : char
- next : Node

Node

—> next

data

Node

» nodes are implementation details that the client does
not need to know about

» LinkedList needs to be able to create nodes
4 i.e., needs access to a constructor

» if we create a separate Node class other clients can

create nodes

» no way to hide the constructor from every client except
LinkedList

» Java allows the implementer to define a class inside of
another class

57

public class LinkedCharList {

/**
* A class representing the internal nodes of the linked list.
* A node is an aggregation of a data element and a link to the
* next node in the sequence.
*
*/
public static class Node {
private char data;

private Node next;

// see next slide for Node implementation

/**
* Initialize this node to store the given data value and sets
* the reference to the next node in the sequence to null.
%
* @param data
* the data element to store in this node
*/
public Node(char data) {
this.data = data;

this.next = null;

60

/*
*

*

*

*

Returns the data element stored in this node.

@return the data element stored in this node

*/

pu

/*
*
*
*

*

*

blic char data() {
return this.data;

*

Returns the reference to the next node in the sequence after
this node.

@return the reference to the next node in the sequence
after this node

*/

pu

blic Node next() {
return this.next;

Node details

- Node is an nested class
- a nested class is a class that is defined inside of
another class

- a static nested class behaves like a regular class

- does not have access to private members of the enclosing

class
Node does not have access to the private fields of LinkedList

- a nested class is a member of the enclosing class
- LinkedList has direct access to private features of Node

61

Linked list fields

» at a minimum we need fields for:

» size of the list (the number of elements in the list)
» the first node of the list (the head node)

» do we need a field for the capacity?
» discuss amongst yourselves...

62

public class LinkedCharList {
public static class Node {

// see previous slides for Node implementation

private Node head;

private int size;

No argument constructor

» the no argument constructor should create an empty
list
» the size of the list is equal to zero

» there is no head node (because there is nothing in the list)

No argument constructor

/**
* Initialize the linked list to be empty (size == 0).
*/
public LinkedCharList() {
this.head = null;
this.size = 0;

}

Creating a linked list

» to create the following linked list:

lal .) IXI ‘_ a |r‘| .__9 lal ‘__9 ISI ‘

null

LinkedCharList t = new LinkedCharList();
t.add(‘a’);
.add(“x’);
.add(‘r’);
.add(‘a’);
.add(‘s’);

+ &+ + -+

66

Add to end of list

» to add an element to the end of the list we need to:
» make a node to store the new element
» get a reference to the current tail node

» set the current tail node’s next field to point to the new
node

» Increment size

/*

public boolean add(char elem) {

68

*

* Add an element to the end of this linked 1list.

*

* @param elem

* the element to add to the end of this linked list

* @return true (to be consistent with java.util.Collection)

*/

Node n = this.head;

for (int i = @; i < this.size; i++) {

n = n.next;

}

n.next = new Node(elem);

this.size++;

return true;

What'’s wrong with this
implementation?

/**

* Add an element to the end of this linked 1list.

*

*

*

*

public boolean add(char elem) {

@param elem

the element to add to the end of this linked list

* @return true (to be consistent with java.util.Collection)

/

Node n = this.head;

for (int i = @; 1 < this.size - 1; i++) {

n = n.next;
n.next = new Node(elem);
this.size++;

return true;

What'’s wrong with this
implementation?

public boolean add(char elem) {

if (this.head == null) {
this.head = new Node(elem);

}

else {
Node n = this.head;
for (int i = @; 1 < this.size - 1; i++) {

n = n.next;

}

n.next = new Node(elem);

}

this.size++;

return true;

70

Getting an element in the list

» a client may wish to retrieve the ith element from a list
» the ability to access arbitrary elements of a sequence in the

same amount of time is called random access

» arrays support random access; linked lists do not

» to access the ith element in a linked list we need to

sequentially follow the first (i - 1) links

Ial

-

t.get(3)

» takes O(n) time versus O(1) for arrays

71

) 1

xI

-

<

link ©

r‘I

*

<

link 1

d

1 F

link 2

Getting an element in the list

» to get an element from the list we need to:
» validate the index
» get areference to the node at the specified index
» return the data of the node

72

*

*

*

Get the element stored at the given index in this linked list.

@param index
the index of the element to get

@return the element stored at the given index in this linked list

@throws IndexOutOfBoundsException
if (index < @) || (index > size)
/

public char get(int index) {

73

if (index < @ || index >= this.size) {
throw new IndexOutOfBoundsException();
}
Node n = this.head;
for (int i = @0; 1 < index - 1; i++) {
n = n.next;

}

return n.data;

What’s wrong with this
implementation?

*

*

*

Get the element stored at the given index in this linked list.

@param index
the index of the element to get
@return the element stored at the given index in this linked list
@throws IndexOutOfBoundsException
if (index < @) || (index > size)
/

public char get(int index) {

74

if (index < @ || index >= this.size) {
throw new IndexOutOfBoundsException();
}
Node n = this.head;
for (int i = @0; 1 < index; i++) {
n = n.next;

}

return n.data;

Setting an element in the list

» setting the ith element is almost exactly the same as
getting the ith element:

» validate the index

get a reference to the node at the specified index
remember the current data of the node

set the data of the node

return the old data of the node

v v v Vv

75

/**
* Sets the element stored at the given index in this linked list. Returns the
* o0ld element that was stored at the given index.

* @param index
* the index of the element to set
* @param elem
* the element to store in this linked list
* @return the old element that was stored at the given index
* @throws IndexOutOfBoundsException
* if (index < @) || (index > size)
*/
public char set(int index, char elem) {
if (index < @ || index >= this.size) {
throw new IndexOutOfBoundsException();
}
Node n = this.head;
for (int i = @; i < index; i++) {
n = n.next;
}
char oldData = n.data;
n.data = elem;
return oldData;

Adding in the middle of a list

» a client may wish to add an element at the ith index of
a list

t.add(2, 'Q');

Ial F a IXI * a |Q| * a Ir.I * a lal ‘

» what steps are required?

» discuss amongst yourselves here...

77

Removing an element

» a client may wish to remove an element at the ith
index of a list

t.remove(2)

» what steps are required?
» discuss amongst yourselves here...

78

