
Arrays

1

Arrays
 in Java an array is a container object that holds a fixed

number of values of a single type

 the length of an array is established when the array is
created

2
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 to declare an array you use the element type followed

by an empty pair of square brackets

3
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

Arrays
 to create an array you use the new operator followed by

the element type followed by the length of the array in
square brackets

4
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

Arrays
 the number of elements in the array is stored in the

public field named length

5
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

int n = collection.length;
// the public field length holds the number of elements

Arrays
 the values in an array are called elements

 the elements can be accessed using a zero-based index
(similar to lists and strings)

6
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 the elements can be accessed using a zero-based index

(similar to lists and strings)

7
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

collection[0] = 100.0;
collection[1] = 100.0;
collection[2] = 100.0;
collection[3] = 100.0;
collection[4] = 100.0;
collection[5] = 100.0;
collection[6] = 100.0;
collection[7] = 100.0;
collection[8] = 100.0;
collection[9] = 100.0; // set all elements to equal 100.0
collection[10] = 100.0; // ArrayIndexOutOfBoundsException

Computational complexity

8

Computational complexity
 computational complexity is concerned with

describing the amount of resources needed to run an
algorithm

 for our purposes, the resource is time

 complexity is usually expressed as a function of 𝑛 the
size of the problem

 the size of the problem is always a non-negative integer
value (i.e., a natural number)

9

Searching a list
/**

* Returns true if the specified array contains the specified value, and false

* otherwise.

*

* @param arr

* an array to search

* @param value

* a value to search for

* @return true if the specified array contains the specified value, and false

* otherwise

*/

public static boolean contains(int[] arr, int value) {

boolean result = false;

for (int i = 0; i < arr.length; i++) {

if (arr[i] == value) {

result = true;

break;

}

}

return result;

}

10

size of problem, 𝑛, is
the number of elements
in the array arr

Estimating complexity
 the basic strategy for estimating complexity:

1. for each line of code, estimate its number of elementary
instructions

2. for each line of code, determine how often it is executed

3. determine the total number of elementary instructions

11

Elementary instructions
 what is an elementary instruction?

 for our purposes, any expression that can be computed in a
constant amount of time

 examples:

 declaring a variable

 assignment (=)

 arithmetic (+, -, *, /, %)

 comparison (<, >, ==, !=)

 Boolean expressions (||, &&, !)

 if, else

 array access

 return statement

12

Elementary instructions
 loops are technically more complicated, but for our

purposes you can consider for(/* something */)
to be a single elementary operation

 but this is not true if the loop initialization, condition, or
increment expression involves non-elementary operations

13

Estimating complexity
 count the number of elementary operations in each

line of contains

 discuss amongst yourselves...

14

Searching a list

public static boolean contains(int[] arr, int value) {

boolean result = false; 2

for (int i = 0; i < arr.length; i++) { 1

if (arr[i] == value) { 3

result = true; 1

break; 1

}

}

return result; 1

}

15

Estimating complexity
 for each line of code, determine how often it is

executed

16

Searching a list

public static boolean contains(int[] arr, int value) {

boolean result = false; 1

for (int i = 0; i < arr.length; i++) { 1

if (arr[i] == value) { up to n

result = true; up to 1

break; up to 1

}

}

return result; 1

}

17

Total number of operations
 when counting the total number of operations, we

often consider the worst case scenario

 let’s assume that the lines that might run always run

 multiply the number of elementary operations by the
number of times each line runs

18

Total number of operations
 multiply the number of elementary operations by the

number of times each line runs

19

Searching a list

public static boolean contains(int[] arr, int value) {

boolean result = false; 2 * 1

for (int i = 0; i < arr.length; i++) { 1 * 1

if (arr[i] == value) { 3 * n

result = true; 1 * 1

break; 1 * 1

}

}

return result; 1 * 1

}

20

Running time

21

 the running time for contains is 𝑓 𝑛 = 3𝑛 + 6

Big-O notation
 when counting the number of elementary operations

we assumed that all elementary operations would run
in 1 unit of time

 in reality this isn’t true and exactly what constitutes an
elementary operation and how much time each
operation requires depends on many factors

 in our expression 𝑓 𝑛 = 3𝑛 + 6 the constants 3 and 6
are likely to be inaccurate

 big-O notation describes the complexity of an
algorithm that is insensitive to variations in how
elementary operations are counted

22

Big-O notation
 using big-O notation we say that the complexity of
contains is in 𝑂(𝑛)

 more formally, a function f(n) is an element of O(g(n))
if and only if there is a positive real number M and a
real number m such that

| f(n) | < M| g(n) | for all n > m

23

Big-O notation
 Claim: 𝑓 𝑛 = 3𝑛 + 6 ∈ 𝑂(𝑛)

 Proof: 𝑓 𝑛 = 3𝑛 + 6, 𝑔 𝑛 = 𝑛

For 𝑛 > 1, 𝑓 𝑛 > 0 and 𝑔 𝑛 ≥ 0; therefore, we do not
need to consider the absolute values. We need to find 𝑀
and 𝑚 such that the following is true:

For all 𝑛 > 1 we have:

∴ 3𝑛 + 6 < 9𝑛 for all 𝑛 > 1 and 𝑓(𝑛) ∈ 𝑂(𝑛)

24

3𝑛 + 6 < 𝑀𝑛 for all 𝑛 > 𝑚

3𝑛 + 6 ≤ 9𝑛

Big-O notation
 Proof 2: 𝑓 𝑛 = 3𝑛 + 6, 𝑔 𝑛 = 𝑛

For 𝑛 > 1, 𝑓 𝑛 > 0 and 𝑔 𝑛 ≥ 0; therefore, we do not
need to consider the absolute values. We need to find 𝑀
and 𝑚 such that the following is true:

For 𝑛 > 1 we have:

∴ 3𝑛 + 6 < 9𝑛 for all 𝑛 > 1 and 𝑓(𝑛) ∈ 𝑂(𝑛)

25

3𝑛 + 6 < 𝑀𝑛 for all 𝑛 > 𝑚

3𝑛 + 6

𝑛
<
3𝑛 + 6𝑛

𝑛
<
9𝑛

𝑛
< 9

Big-O notation
 the second proof uses the following recipe:

1. Choose 𝑚 = 1

2. Assuming 𝑛 > 1 derive 𝑀 such that

 assuming 𝑛 > 1 implies that 1 < 𝑛, 𝑛 < 𝑛2, 𝑛2 < 𝑛3,
etc. which means you can replace terms in the
numerator to simplify the expression

26

𝑓(𝑛)

𝑔(𝑛)
< 𝑀

𝑔(𝑛)

𝑔(𝑛)
= 𝑀

Big-O notation
 Claim: 𝑓 𝑛 = 3𝑛2 − 𝑛 + 100 ∈ 𝑂 𝑛2

 Proof:

1. Choose 𝑚 = 1

2. Assume 𝑛 > 1

27

3𝑛2 − 𝑛 + 100

𝑛2
<
3𝑛2 + 𝑛 + 100

𝑛2
<
3𝑛2 + 𝑛2 + 100𝑛2

𝑛2

=
104𝑛2

𝑛2

= 104

change to + increase increase

𝑂(1)
 𝑂(1) describes an algorithm that runs in constant time

 i.e., the run time does not depend on the size of the input

 examples:

 determine if an integer is even or odd

 get for ArrayList

 contains for HashSet

28

𝑂(log2 𝑛)
 𝑂(log2 𝑛) describes an algorithm whose runtime grows

in proportion to the logarithm of the input size

 i.e., doubling the size of the input increases the runtime by
1 unit of time

 called logarithmic complexity

 examples:

 Arrays.binarySearch (contains for a sorted array)

 contains for TreeSet

29

𝑂(𝑛)
 𝑂(𝑛) describes an algorithm whose runtime grows in

proportion to the size of the input

 i.e., doubling the input size double the runtime
(approximately)

 called linear complexity

 examples:

 finding the minimum or maximum value in an array or list

 contains for an unsorted array

30

𝑂(𝑛log2 𝑛)
 𝑂(𝑛 log2 𝑛) describes an algorithm whose runtime

complexity is slightly greater than linear

 i.e., doubling the size of the input more than doubles the
runtime (approximately)

 called linearithmic complexity

 examples:

 efficient sorting of an array or list

31

𝑂(𝑛2)
 𝑂(𝑛2) describes an algorithm whose runtime grows in

proportion to the square of the size of the input

 i.e., doubling the input size quadruples the runtime
(approximately)

 called quadratic complexity

 examples:

 inefficient sorting of an array or list

 checking if everything in one list is in another list

32

𝑂(2𝑛)
 𝑂(2𝑛) describes an algorithm whose runtime grows

exponentially with the size of the input

 i.e., increasing the input size by 1 doubles the runtime
(approximately)

 called exponential complexity

 example:

 trying to break a combination lock by trying every possible
combination

33

Comparing Rates of Growth

34

O(n)

O(n logn)

O(n2)O(2n)

n

Comments
 big-O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity

 we say that it describes the limiting, or asymptotic, running
time of an algorithm

 for small values of n it is often the case that a less
efficient algorithm (in terms of big-O) will run faster
than a more efficient one

35

Implementing a list

36

Data Structures
 data structures (and algorithms) are one of the

foundational elements of computer science

 a data structure is a way to organize and store data so
that it can be used efficiently

 list – sequence of elements

 set – a group of unique elements

 map – access elements using a key

 many more...

37

http://en.wikipedia.org/wiki/List_of_data_structures

Implementing a list
 suppose that we wanted to implement our own list-of-

strings class

 we want to use an array to store the string references

 what public features should our class have?

 discuss amongst yourselves here...

38

Implementing a list
 how does the choice of using an array affect the

implementation of the list features?

 discuss amongst yourselves here...

39

Implementing a list using an array
 the capacity of a list is the maximum number of

elements that the list can hold

 note that the capacity is different than the size

 the size of the list is the number of elements in the list whereas
the capacity is the maximum number of elements that the list can
hold

 the client can specify the capacity using a constructor

 if the clients tries to add more elements than the list
can hold we have to increase the capacity

40

41

public class StringList {

private String[] elements;

private int capacity;

private int size;

// Initializes an empty list of strings having the given capacity.

public StringList(int capacity) {

if (capacity < 1) {

throw new

IllegalArgumentException("capacity must be positive");

}

this.capacity = capacity;

this.size = 0;

this.elements = new String[capacity];

}

Get and set
 to get and set an element at an index we simply get or

set the element in the array at the given index

 because arrays are stored contiguously in memory, this
operation has O(1) complexity (in theory)

42

43

/**

* Returns the string at the specified position in this list.

*

* @param index

* index of the string to return

* @return the string at the specified position in this list

* @throws IndexOutOfBoundsException

* if index is out of range (index is less than zero or

* index is greater than or equal to the size of this list)

*/

public String get(int index) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException("index: " + index);

}

return this.elements[index];

}

44

/**

* Replaces the string at the specified position in this list with the

* specified string.

*

* @param index

* index of the element to replace

* @param element

* string to be stored at the specified position

* @return the string previously at the specified position

*/

public String set(int index, String element) {

String oldElement = this.get(index);

this.elements[index] = element;

return oldElement;

}

Adding to the end of the list
 when we add an element to the end of the list we have

to check if there is room in the array to hold the new
element

 if not then we have to:

1. make a new array with double the capacity of the old array

2. copy all of the elements from the old array into the new array

3. add the new element to the new array

 we say that adding to the end of an array-based list
has O(1) amortized complexity

45

46

/**

* Appends the specified string to the end of this list.

*

* @param element string to be appended to this list

* @return true (consistent with java.util.Collection)

*/

public boolean add(T element) {

if (this.size == this.capacity) {

this.resize();

}

this.elements[this.size] = element;

this.size++;

return true;

}

47

/**

* Creates a new array twice the size of this.elements, and copies

* the references from this.elements to the new array. Assigns the

* new array to this.elements.

*/

private void resize() {

int newCapacity = 2 * this.capacity;

String[] newElements = new String[newCapacity];

for (int i = 0; i < this.size; i++) {

newElements[i] = this.elements[i];

}

this.capacity = newCapacity;

this.elements = newElements;

}

Inserting in the middle of an array
 when we insert an element into the middle of an array

we have to:

1. check if there is room in the array to hold the new
element

 resize if necessary

2. shift the elements from the insertion index to the end of
the array up by one index

3. set the array at the insertion index to the new element

 Step 2 has O(n) complexity

48

49

/**

* Inserts the specified string at the specified position in this list.

* Shifts the string currently at that position (if any) and any subsequent

* strings to the right (adds one to their indices).

*

* @param index

* index at which the specified element is to be inserted

* @param element

* element to be inserted

* @throws IndexOutOfBoundsException

* if index is out of range (index is less than zero or index is

* greater than or equal to the size of this list)

*/

public void add(int index, T element) {

if (index < 0 || index > this.size) {

throw new IndexOutOfBoundsException("index: " + index);

}

if (this.size == this.capacity) {

this.resize();

}

for (int i = this.size - 1; i >= index; i--) {

this.elements[i + 1] = this.elements[i];

}

this.set(index, element);

}

Other list operations
 removing an element from the end of an array-based

list takes O(1) time

 removing an element from the middle of an array-
based list takes O(n) time

 need to shift all elements from the removal index to the end
of the array down by one index

50

 in most cases you should use an array-based list

 if you find yourself in a situation where most of your
operations require inserting or removing elements
near the front of a list then you should use a different
kind of list

51

Recursive Objects

Singly Linked Lists

52

Recursive Objects
 an object that holds a reference to its own type is a

recursive object

 linked lists and trees are classic examples in computer
science of objects that can be implemented recursively

53

Singly Linked List
 a data structure made up of a sequence of nodes

 each node has

 some data

 a field that contains a reference (a link) to the next node in
the sequence

 suppose we have a linked list that holds characters; a
picture of our linked list would be:

54

'a'

link

'x' 'r' 'a' 's'

null

node

data

Singly Linked List

 the first node of the list is called the head node

 the last node of the list is called the tail node

55

'a'

link

'x' 'r' 'a' 's'

null

head node

data

tail node

UML Class Diagram

56

LinkedList

- size : int

- head : Node

...

Node

- data : char

- next : Node

...

'a'

Node

data

next

Node
 nodes are implementation details that the client does

not need to know about

 LinkedList needs to be able to create nodes

 i.e., needs access to a constructor

 if we create a separate Node class other clients can
create nodes

 no way to hide the constructor from every client except
LinkedList

 Java allows the implementer to define a class inside of
another class

57

58

public class LinkedCharList {

/**

* A class representing the internal nodes of the linked list.

* A node is an aggregation of a data element and a link to the

* next node in the sequence.

*

*/

public static class Node {

private char data;

private Node next;

// see next slide for Node implementation

}

}

59

/**

* Initialize this node to store the given data value and sets

* the reference to the next node in the sequence to null.

*

* @param data

* the data element to store in this node

*/

public Node(char data) {

this.data = data;

this.next = null;

}

60

/**

* Returns the data element stored in this node.

*

* @return the data element stored in this node

*/

public char data() {

return this.data;

}

/**

* Returns the reference to the next node in the sequence after

* this node.

*

* @return the reference to the next node in the sequence

* after this node

*/

public Node next() {

return this.next;

}

Node details
• Node is an nested class

• a nested class is a class that is defined inside of
another class

• a static nested class behaves like a regular class

• does not have access to private members of the enclosing
class

• Node does not have access to the private fields of LinkedList

• a nested class is a member of the enclosing class

• LinkedList has direct access to private features of Node

61

Linked list fields
 at a minimum we need fields for:

 size of the list (the number of elements in the list)

 the first node of the list (the head node)

 do we need a field for the capacity?

 discuss amongst yourselves...

62

63

public class LinkedCharList {

public static class Node {

// see previous slides for Node implementation

}

private Node head;

private int size;

No argument constructor
 the no argument constructor should create an empty

list

 the size of the list is equal to zero

 there is no head node (because there is nothing in the list)

64

No argument constructor

/**

* Initialize the linked list to be empty (size == 0).

*/

public LinkedCharList() {

this.head = null;

this.size = 0;

}

65

Creating a linked list
 to create the following linked list:

LinkedCharList t = new LinkedCharList();

t.add('a');

t.add('x');

t.add('r');

t.add('a');

t.add('s');

66

'a' 'x' 'r' 'a' 's'

null

Add to end of list
 to add an element to the end of the list we need to:

 make a node to store the new element

 get a reference to the current tail node

 set the current tail node’s next field to point to the new
node

 increment size

67

68

/**

* Add an element to the end of this linked list.

*

* @param elem

* the element to add to the end of this linked list

* @return true (to be consistent with java.util.Collection)

*/

public boolean add(char elem) {

Node n = this.head;

for (int i = 0; i < this.size; i++) {

n = n.next;

}

n.next = new Node(elem);

this.size++;

return true;

}

What’s wrong with this
implementation?

69

/**

* Add an element to the end of this linked list.

*

* @param elem

* the element to add to the end of this linked list

* @return true (to be consistent with java.util.Collection)

*/

public boolean add(char elem) {

Node n = this.head;

for (int i = 0; i < this.size - 1; i++) {

n = n.next;

}

n.next = new Node(elem);

this.size++;

return true;

}

What’s wrong with this
implementation?

70

public boolean add(char elem) {

if (this.head == null) {

this.head = new Node(elem);

}

else {

Node n = this.head;

for (int i = 0; i < this.size - 1; i++) {

n = n.next;

}

n.next = new Node(elem);

}

this.size++;

return true;

}

Getting an element in the list
 a client may wish to retrieve the ith element from a list

 the ability to access arbitrary elements of a sequence in the
same amount of time is called random access

 arrays support random access; linked lists do not

 to access the ith element in a linked list we need to
sequentially follow the first (i - 1) links

 takes O(n) time versus O(1) for arrays

71

t.get(3) link 0 link 1 link 2

'a' 'x' 'r' 'a' 's'

Getting an element in the list
 to get an element from the list we need to:

 validate the index

 get a reference to the node at the specified index

 return the data of the node

72

73

/**

* Get the element stored at the given index in this linked list.

*

* @param index

* the index of the element to get

* @return the element stored at the given index in this linked list

* @throws IndexOutOfBoundsException

* if (index < 0) || (index > size)

*/

public char get(int index) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException();

}

Node n = this.head;

for (int i = 0; i < index - 1; i++) {

n = n.next;

}

return n.data;

}

What’s wrong with this
implementation?

74

/**

* Get the element stored at the given index in this linked list.

*

* @param index

* the index of the element to get

* @return the element stored at the given index in this linked list

* @throws IndexOutOfBoundsException

* if (index < 0) || (index > size)

*/

public char get(int index) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException();

}

Node n = this.head;

for (int i = 0; i < index; i++) {

n = n.next;

}

return n.data;

}

Setting an element in the list
 setting the ith element is almost exactly the same as

getting the ith element:

 validate the index

 get a reference to the node at the specified index

 remember the current data of the node

 set the data of the node

 return the old data of the node

75

76

/**

* Sets the element stored at the given index in this linked list. Returns the

* old element that was stored at the given index.

*

* @param index

* the index of the element to set

* @param elem

* the element to store in this linked list

* @return the old element that was stored at the given index

* @throws IndexOutOfBoundsException

* if (index < 0) || (index > size)

*/

public char set(int index, char elem) {

if (index < 0 || index >= this.size) {

throw new IndexOutOfBoundsException();

}

Node n = this.head;

for (int i = 0; i < index; i++) {

n = n.next;

}

char oldData = n.data;

n.data = elem;

return oldData;

}

Adding in the middle of a list
 a client may wish to add an element at the ith index of

a list

 what steps are required?

 discuss amongst yourselves here…

77

t 'a' 'x' 'r' 'a'

t.add(2, 'Q');

'a' 'x' 'r' 'a''Q'

Removing an element
 a client may wish to remove an element at the ith

index of a list

 what steps are required?

 discuss amongst yourselves here…

78

t

'a' 'x' 'r' 'a'

t.remove(2)

'a' 'x' 'r' 'a''Q'

