
Aggregation and Composition

[notes Chapter 4]

1

Aggregation and Composition

 the terms aggregation and composition are used to
describe a relationship between objects

 both terms describe the has-a relationship
 the university has-a collection of departments

 each department has-a collection of professors

2

Aggregation and Composition

 composition implies ownership
 if the university disappears then all of its departments disappear

 a university is a composition of departments

 aggregation does not imply ownership
 if a department disappears then the professors do not disappear

 a department is an aggregation of professors

3

Aggregation
 suppose a Person has a name and a date of birth

public class Person {

private String name;

private Date birthDate;

public Person(String name, Date birthDate) {

this.name = name;

this.birthDate = birthDate;

}

public Date getBirthDate() {

return this.birthDate;

}

}

4

 the Person example uses aggregation

 notice that the constructor does not make a new copy of the
name and birth date objects passed to it

 the name and birth date objects are shared with the client

 both the client and the Person instance are holding
references to the same name and birth date

5

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

6

64 client

s 250a

d 350a

p 450a

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250a

birthDate 350a

Person object
and client have
a reference to
the same String
object

7

64 client

s 250a

d 350a

p 450a

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250a

birthDate 350a

Person object
and client have
a reference to
the same Date
object

 what happens when the client modifies the Date
instance?

 prints Fri Nov 03 00:00:00 EST 1995

8

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

 because the Date instance is shared by the client and
the Person instance:

 the client can modify the date using d and the Person
instance p sees a modified birthDate

 the Person instance p can modify the date using birthDate
and the client sees a modified date d

9

 note that even though the String instance is shared by
the client and the Person instance p, neither the client
nor p can modify the String

 immutable objects make great building blocks for other
objects

 they can be shared freely without worrying about their state

10

UML Class Diagram for Aggregation

11

Person StringDate

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example
 consider implementing a bouncing ball whose

position is governed by the following equations of
motion (see this lab from last year)

12

𝐩𝑖+1 = 𝐩𝑖 + 𝐯𝑖𝛿𝑡 +
1

2
𝐠𝛿𝑡2

𝐯𝑖+1 = 𝐯𝑖 + 𝐠𝛿𝑡

𝐩𝑖 position at time 𝑡𝑖

𝐯𝑖 velocity at time 𝑡𝑖

𝐠 acceleration due to gravity

𝛿𝑡 = 𝑡𝑖+1 − 𝑡𝑖

http://www.eecs.yorku.ca/course_archive/2016-17/W/2030/labs/lab3/lab3.html

Another Aggregation Example
 the Ball has-a Point2 that represents the position of

the ball and a Vector2 that represents the velocity of
the ball

13

Ball Vector2Point2

1 1

14

public class Ball {

/**

* The current position of the ball.

*/

private Point2 position;

/**

* The current velocity of the ball.

*/

private Vector2 velocity;

/**

* Gravitational acceleration vector.

*/

private static final Vector2 G = new Vector2(0.0, -9.81);

15

/**

* Initialize the ball so that its position and velocity are

* equal to the given position and velocity.

*

* @param position

* the position of the ball

* @param velocity

* the velocity of the ball

*/

public Ball(Point2 position, Vector2 velocity) {

this.position = position;

this.velocity = velocity;

}

16

/**

* Return the position of the ball.

*

* @return the position of the ball

*/

public Point2 getPosition() {

return this.position;

}

/**

* Return the velocity of the ball.

*

* @return the velocity of the ball

*/

public Vector2 getVelocity() {

return this.velocity;

}

17

/**

* Set the position of the ball to the given position.

*

* @param position

* the new position of the ball

*/

public void setPosition(Point2 position) {

this.position = position;

}

/**

* Set the velocity of the ball to the given velocity.

*

* @param velocity

* the new velocity of the ball

*/

public void setVelocity(Vector2 velocity) {

this.velocity = velocity;

}

Ball as an aggregation
 implementing Ball is very easy

 fields

 are references to existing objects provided by the client

 accessors

 give clients a reference to the aggregated Point2 and
Vector2 objects

 mutators

 set fields to existing object references provided by the client

 we say that the Ball fields are aliases

18

19

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);));

}

20

64 client

pos 250a

vel 350a

ball 450a

250 Point2 object

x 10.0

y 20.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

21

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);

// does ball and client share the same objects?

Point2 ballPos = ball.getPosition();

System.out.println("same Point2 object?: " + (ballPos == pos));

}

22

64 client

pos 250a

vel 350a

ball 450a

ballPos 250a

250 Point2 object

x 10.0

y 20.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

ballPos == pos is true

23

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);

// does ball and client share the same objects?

Point2 ballPos = ball.getPosition();

System.out.println("same Point2 object?: " + (ballPos == pos));

// client changes pos

pos.set(-99.0, -22.0);

System.out.println("ball position: " + ballPos);

}

24

64 client

pos 250a

vel 350a

ball 450a

ballPos 250a

250 Point2 object

x -99.0

y -22.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

pos.set(-99.0, -22.0);

Ball as aggregation
 if a client gets a reference to the position or velocity of

the ball, then the client can change these quantities
without asking the ball

 this is not a flaw of aggregation

 it’s just the consequence of choosing to use aggregation

25

Composition

26

Composition
 recall that an object of type X that is composed of an

object of type Y means

 X has-a Y object and

 X owns the Y object

 in other words

27

the X object has exclusive access to its Y object

Composition

 this means that the X object will generally not share
references to its Y object with clients

 constructors will create new Y objects

 accessors will return references to new Y objects

 mutators will store references to new Y objects

 the “new Y objects” are called defensive copies

28

the X object has exclusive access to its Y object

Composition & the Default Constructor

 if a default constructor is defined it must create a
suitable Y object

public X()

{

// create a suitable Y; for example

this.y = new Y(/* suitable arguments */);

}

29

defensive copy

the X object has exclusive access to its Y object

Composition & Other Constructors

 a constructor that has a Y parameter must first deep
copy and then validate the Y object

public X(Y y)

{

// create a copy of y

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

30

defensive copy

the X object has exclusive access to its Y object

Composition and Other Constructors
 why is the deep copy required?

 if the constructor does this

// don’t do this for composition

public X(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

31

the X object has exclusive access to its Y object

 Worksheet Question 1

32

Composition & Copy Constructor

 if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

public X(X other)

{

// create a new Y that is a copy of other.y

this.y = new Y(other.getY());

}

33

defensive copy

the X object has exclusive access to its Y object

Composition & Copy Constructor
 what happens if the X copy constructor does not make

a deep copy of the other X object’s Y object?

// don’t do this

public X(X other)

{

this.y = other.y;

}

 every X object created with the copy constructor ends up
sharing its Y object

 if one X modifies its Y object, all X objects will end up with a
modified Y object

 this is called a privacy leak

34

 Worksheet Question 2

35

Composition and Accessors

 never return a reference to a field; always return a deep
copy

public Y getY()

{

return new Y(this.y);

}

36

defensive copy

the X object has exclusive access to its Y object

Composition and Accessors
 why is the deep copy required?

 if the accessor does this

// don’t do this for composition

public Y getY() {

return this.y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

37

the X object has exclusive access to its Y object

 Worksheet Question 3

38

Composition and Mutators

 if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

public void setY(Y y)

{

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

39

defensive copy

the X object has exclusive access to its Y object

Composition and Mutators
 why is the deep copy required?

 if the mutator does this

// don’t do this for composition

public void setY(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

40

the X object has exclusive access to its Y object

 Worksheet Question 4

41

Price of Defensive Copying
 defensive copies are required when using composition,

but the price of defensive copying is time and memory
needed to create and garbage collect defensive copies
of objects

 recall the Ball program

 again, see this lab from last year

 if you used aggregation then moving the ball could be done
without making any defensive copies

42

http://www.eecs.yorku.ca/course_archive/2016-17/W/2030/labs/lab3/lab3.html

43

/**

* Moves the ball from its current position using its current

* velocity accounting for the force of gravity. See the Lab 3

* document for a description of how to compute the new position

* and velocity of the ball.

*

* @param dt

* the time period over which the ball has moved

* @return the new position of the ball

*/

public Point2 move(double dt) {

Vector2 dp1 = Lab3Util.multiply(dt, this.velocity);

Vector2 dp2 = Lab3Util.multiply(0.5 * dt * dt, Ball.G);

Vector2 dp = Lab3Util.add(dp1, dp2);

this.position = Lab3Util.add(this.position, dp);

Vector2 dv = Lab3Util.multiply(dt, Ball.G);

this.velocity.add(dv);

return this.position;

}

Price of Defensive Copying
 if we use composition to implement Ball then move

must return a defensive copy of this.position

 this doesn’t seem like such a big deal until you realize
that the BouncingBall program causes the ball to
move many times each second

44

Composition (Part 2)

45

Class Invariants
 class invariant

 some property of the state of the object that is established
by a constructor and maintained between calls to public
methods

 in other words:

 the constructor ensures that the class invariant holds when the
constructor is finished running

 the invariant does not necessarily hold while the constructor is
running

 every public method ensures that the class invariant holds when
the method is finished running

 the invariant does not necessarily hold while the method is running

46

Period Class
 adapted from Effective Java by Joshua Bloch

 available online at
http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

 we want to implement a class that represents a period
of time

 a period has a start time and an end time

 end time is always after the start time (this is the class invariant)

47

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

Period Class
 we want to implement a class that represents a period

of time

 has-a Date representing the start of the time period

 has-a Date representing the end of the time period

 class invariant: start of time period is always prior to the
end of the time period

48

Period Class

49

Period Date

2

Period is a composition

of two Date objects

50

import java.util.Date;

public class Period {

private Date start;

private Date end;

/**

* Initialize the period to the given start and end dates.

*

* @param start beginning of the period

* @param end end of the period; must not precede start

* @throws IllegalArgumentException if start is after end

*/

public Period(Date start, Date end) {

if (start.compareTo(end) > 0) {

throw new IllegalArgumentException("start after end");

}

this.start = start;

this.end = end;

}

 Worksheet Question 5

51

52

/**

* Initializes a period by copying another period.

*

* @param other the time period to copy

*/

public Period(Period other) {

this.start = other.start;

this.end = other.end;

}

 Worksheet Question 6

53

54

/**

* Returns the starting date of the period.

*

* @return the starting date of the period

*/

public Date getStart() {

return this.start;

}

/**

* Returns the ending date of the period.

*

* @return the ending date of the period

*/

public Date getEnd() {

return this.end;

}

 Worksheet Question 7

55

56

/**

* Sets the starting date of the period.

*

* @param newStart the new starting date of the period

* @return true if the new starting date is earlier than the

* current end date; false otherwise

*/

public boolean setStart(Date newStart) {

boolean ok = false;

if (newStart.compareTo(this.end) < 0) {

this.start = newStart;

ok = true;

}

return ok;

}

 Worksheet Question 8

57

Privacy Leaks
 a privacy leak occurs when a class exposes a reference to a

non-public field (that is not a primitive or immutable)

 given a class X that is a composition of a Y

these are all examples of privacy leaks

58

public class X {
private Y y;
// …

}

public X(Y y) {
this.y = y;

}

public X(X other) {
this.y = other.y;

}

public Y getY() {
return this.y;

}

public void setY(Y y) {
this.y = y;

}

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 the object state can become inconsistent

 example: if a CreditCard exposes a reference to its expiry Date
then a client could set the expiry date to before the issue date

59

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 it becomes impossible to guarantee class invariants

 example: if a Period exposes a reference to one of its Date objects
then the end of the period could be set to before the start of the
period

60

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 composition becomes broken because the object no longer
owns its attribute

 when an object “dies” its parts may not die with it

61

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

62 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

Immutability and Composition

 why is Item 5 of the Recipe for Immutability needed?

63

Collections as fields

Still Aggregation and Composition

64

Motivation
 often you will want to implement a class that has-a

collection as a field

 a university has-a collection of faculties and each faculty
has-a collection of schools and departments

 a molecule has-a collection of atoms

 a person has-a collection of acquaintances

 from the notes, a student has-a collection of GPAs and has-
a collection of courses

65

What Does a Collection Hold?
 a collection holds references to instances

 it does not hold the instances

66

ArrayList<Date> dates =
new ArrayList<Date>();

Date d1 = new Date();
Date d2 = new Date();
Date d3 = new Date();

dates.add(d1);
dates.add(d2);
dates.add(d3);

100 client invocation

dates 200a

d1 500a

d2 600a

d3 700a

...

200 ArrayList object

500a

600a

700a

 Worksheet Question 9

67

Student Class (from notes)
 a Student has-a string id

 a Student has-a collection of yearly GPAs

 a Student has-a collection of courses

68

Student Set<Course>List<Double>

1 1

Double CourseString

14 *

gpas courses

id

Firework class
 see this lab from last year

 a Firework has-a list of Particles

 aggregation

 class invariant

 list of particles is never null

69

Firework List<Particle>

1

Particle

*

http://www.eecs.yorku.ca/course_archive/2016-17/W/2030/labs/lab4/lab4.html

70

public class Firework {

/**

* The particles for this firework.

*/

private List<Particle> particles;

/**

* Initializes this firework to have zero particles.

*/

public Firework() {

this.particles = new ArrayList<Particle>();

}

Collections as fields
 when using a collection as a field of a class X you need

to decide on ownership issues

 does X own or share its collection?

 if X owns the collection, does X own the objects held in the
collection?

71

X Shares its Collection with other Xs
 if X shares its collection with other X instances, then

the copy constructor does not need to create a new
collection

 the copy constructor can simply assign its collection

 [notes 5.3.3] refer to this as aliasing

72

73

/**

* Initializes this firework so that its particles alias

* the particles of another firework.

*

* @param other another firework

*/

public Firework(Firework other) {

this.particles = other.particles;

}

alias: no new List
created

74

700 ArrayList<Particle>
object

1000a

1100a

...

1000 Particle object

...

1100 Particle object

...

100 client invocation

f1 200a

f2 500a

...

200 Firework object

particles 700a

...

500 Firework object

particles 700a

...

Firework f2 = new Firework(f1);

 Worksheet Question 10

75

X Owns its Collection: Shallow Copy
 if X owns its collection but not the objects in the

collection then the copy constructor can perform a
shallow copy of the collection

 a shallow copy of a collection means

 X creates a new collection

 the references in the collection are aliases for references in
the other collection

76

X Owns its Collection: Shallow Copy

 the hard way to perform a shallow copy

77

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
sCopy.add(d);

}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

X Owns its Collection: Shallow Copy

 the easy way to perform a shallow copy

78

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>(dates);

79

/**

* Initializes this firework so that its particles are a shallow copy

* of the particles of another firework.

*

* @param other another firework

*/

public Firework(Firework other) {

this.particles = new ArrayList<Particle>(other.particles);

}
shallow copy: new List
created, but no new
Particle objects created

80

700 ArrayList<Particle>
object

1000a

1100a

...

800 ArrayList<Particle>
object

1000a

1100a

...

1000 Particle object

...

1100 Particle object

...

100 client invocation

f1 200a

f2 500a

...

200 Firework object

particles 700a

...

500 Firework object

particles 800a

...

Firework f2 = new Firework(f1);

 Worksheet Question 11

81

X Owns its Collection: Deep Copy
 if X owns its collection and the objects in the collection

then the copy constructor must perform a deep copy of
the collection

 a deep copy of a collection means

 X creates a new collection

 the references in the collection are references to new
objects (that are copies of the objects in other collection)

82

X Owns its Collection: Deep Copy

 how to perform a deep copy

83

// assume there is an ArrayList<Date> dates
ArrayList<Date> dCopy = new ArrayList<Date>();
for(Date d : dates)
{
dCopy.add(new Date(d.getTime());

}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

84

/**

* Initializes this firework so that its particles are a deep copy

* of the particles of another firework.

*

* @param other another firework

*/

public Firework(Firework other) {

this.particles = new ArrayList<Particle>();

for (Particle p : other.particles) {

this.particles.add(new Particle(p));

}

} deep copy: new List
created, and new
Particle objects created

85

700 ArrayList<Particle>
object

1000a

1100a

...

800 ArrayList<Particle>
object

2000a

2100a

...

1000 Particle object

...

1100 Particle object

...

100 client invocation

f1 200a

f2 500a

...

200 Firework object

particles 700a

...

500 Firework object

particles 800a

...

Firework f2 = new Firework(f1);

86

2000 Particle object

...

2100 Particle object

...

 Worksheet Question 12

87

