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Graphs
 a graph is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes

 in graph theory the links are normally called edges

 graphs occur frequently in a wide variety of real-world 
problems

 social network analysis

 e.g., six-degrees-of-Kevin-Bacon, Lost Circles

 transportation networks

 e.g., http://ac.fltmaps.com/en

 many other examples

 http://www.visualcomplexity.com/vc/
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Trees
 trees are special cases of graphs

 a tree is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes in the next level 
of the tree

 children of the node

 each node has exactly one parent node

 except for the root node
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Trees
 the root of the tree is the node that has no parent node

 all algorithms start at the root
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Trees
 a node without any children is called a leaf
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Trees
 the recursive structure of a tree means that every node 

is the root of a tree
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Binary Tree
 a binary tree is a tree where each node has at most two 

children

 very common in computer science

 many variations

 traditionally, the children nodes are called the left 
node and the right node
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Binary Tree Algorithms
 the recursive structure of trees leads naturally to 

recursive algorithms that operate on trees

 for example, suppose that you want to search a binary 
tree for a particular element
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public static <E> boolean contains(E element) {

return contains(element, this.root);

}
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private static <E> boolean contains(E element, Node<E> node) {

if (node == null) {

return false;

}

if (element.equals(node.data)) {

return true;

}

boolean inLeftTree = contains(element, node.left);

if (inLeftTree) {

return true;

}

boolean inRightTree = contains(element, node.right);

return inRightTree;

}

examine root

examine left
subtree

examine right
subtree

is tree empty?
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Iteration or Traversal
 visiting every element of the tree can also be done 

recursively

 3 possibilities based on when a node is visited

1. inorder

 recursively traverse the left subtree, 

 then visit the node, 

 then recursively traverse the right subtree
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Iteration or Traversal
2. preorder

 visit the node, 

 then recursively traverse the left subtree, 

 then recursively traverse the right subtree
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Iteration or Traversal
 postorder

 recursively traverse the left subtree, 

 then recursively traverse the right subtree, 

 then visit the node
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Iteration or Traversal
 what kind of traversal is contains?
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Iteration or Traversal
 the previous three tree traversals are all depth-first 

traversals

 called depth first because for any node you traverse the 
entire left subtree before traversing the right subtree

 another possible traversal is to visit all nodes at the 
same level before continuing on the next lower level

 called breadth first search
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Binary Search Trees
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Binary Search Trees (BST)
 the tree from the previous slide is a special kind of 

binary tree called a binary search tree

 in a binary search tree:

1. all nodes in the left subtree have data elements that are 
less than the data element of the root node

2. all nodes in the right subtree have data elements that are 
greater than or equal to the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

44



50

27 73

8 44 83

74 93

right subtree
(all elements >= 50)

left subtree
(all elements < 50)

51

76



Binary Search Trees (BST)
 is every node of a BST the root of a BST?

46



Implementing a BST
 what types of data elements can a BST hold?

 hint: we need to be able to perform comparisons such as 
less than, greater than, and equal to with the data elements
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public class BinarySearchTree<E extends Comparable<E>> {

E must implement Comparable<E>

“for every type E that can be compared to itself”



Implementing a BST: Nodes
 we need a node class that:

 has-a data element

 has-a link to the left subtree

 has-a link to the right subtree

49



50

public class BinarySearchTree<E extends Comparable<E>> {

private static class Node<E> {

private E data;

private Node<E> left;

private Node<E> right;

/**

* Create a node with the given data element. The left and right child

* nodes are set to null.

* 

* @param data

*            the element to store

*/

public Node(E data) {

this.data = data;

this.left = null;

this.right = null;

}

}



Implementing a BST: Fields and Ctor
 a BST has-a root node

 creating an empty BST should set the root node to null

51



52

/**

* The root node of the binary search tree.

*/

private Node<E> root;

/**

* Create an empty binary search tree.

*/

public BinarySearchTree() {

this.root = null;

}



Implementing a BST: Adding elements
 the definition for a BST tells you everything that you 

need to know to add an element

 in a binary search tree:

1. all nodes in the left subtree have data elements that are 
less than the data element of the root node

2. all nodes in the right subtree have data elements that are 
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree
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/**

* Add an element to the tree. The element is inserted into the tree 
in a

* position that preserves the definition of a binary search tree.

* 

* @param element

*            the element to add to the tree

*/

public void add(E element) {

if (this.root == null) {

this.root = new Node<E>(element);

}  

else {

// call recursive static method

BinarySearchTree.add(element, null, this.root);  

}

}
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/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

* 

* @param element      the element to add to the subtree

* @param root         the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) {           // element belongs in the left subtree

if (root.left == null) {                        // is there no left subtree?

root.left = new Node<E>(element);             // add the element as the new left child 

} else {

BinarySearchTree.add(element, root.left);     // recursively add to the left subtree

}

} else {                                          // element belongs in the right subtree

if (root.right == null) {                       // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right);    // recursively add to the right subtree

}

}

}
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/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

* 

* @param element      the element to add to the subtree

* @param root         the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) {           // element belongs in the left subtree

if (root.left == null) {                        // is there no left subtree?

root.left = new Node<E>(element);             // add the element as the new left child 

} else {

BinarySearchTree.add(element, root.left);     // recursively add to the left subtree

}

} else {                                          // element belongs in the right subtree

if (root.right == null) {                       // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right);    // recursively add to the right subtree

}

}

}
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/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

* 

* @param element      the element to add to the subtree

* @param root         the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) {           // element belongs in the left subtree

if (root.left == null) {                        // is there no left subtree?

root.left = new Node<E>(element);             // add the element as the new left child 

} else {

BinarySearchTree.add(element, root.left);     // recursively add to the left subtree

}

} else {                                          // element belongs in the right subtree

if (root.right == null) {                       // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right);    // recursively add to the right subtree

}

}

}



Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child

 right subtree left-most child
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Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child = inorder predecessor

 the node containing the largest value less than the root

 right subtree left-most child = inorder successor

 the node containing the smallest value greater than the root

 it is easy to find the predecessor and successor nodes if 
you can find the nodes containing the maximum and 
minimum elements in a subtree
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/**

* Find the node in a subtree that has the smallest data element.

* 

* @param root

*            the root of the subtree

* @return the node in the subtree that has the smallest data element.

*/

public static <E> Node<E> minimumInSubtree(Node<E> root) {

if (root.left == null) {

return root;

}

return BinarySearchTree.minimumInSubtree(root.left);

}

base case?

recursive case?
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/**

* Find the node in a subtree that has the largest data element.

* 

* @param root

*            the root of the subtree

* @return the node in the subtree that has the largest data element.

*/

public static <E> Node<E> maximumInSubtree(Node<E> root) {

if (root.right == null) {

return root;

}

return BinarySearchTree.maximumInSubtree(root.right);

}

base case?

recursive case?
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/**

* Find the node in a subtree that is the predecessor to the root of the

* subtree. If the predecessor node exists, then it has the

* largest data element in the left subtree of root.

* 

* @param root

*            the root of the subtree

* @return the node in a subtree that is the predecessor to the root of

*         the subtree, or null if the root of the subtree

*         has no predecessor

*/

public static <E> Node<E> predecessorInSubtree(Node<E> root) {

if (root.left == null) {

return null;

}

return BinarySearchTree.maximumInSubtree(root.left);

}
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/**

* Find the node in a subtree that is the successor to the root of the

* subtree. If the successor node exists, then it is the node that has 

* the smallest data element in the right subtree of root.

* 

* @param root

*            the root of the subtree

* @return the node in a subtree that is the successor to the root of 

*         the subtree, or null if the root of the subtree has no

*         successor

*/

public static <E> Node<E> successorInSubtree(Node<E> root) {

if (root.right == null) {

return null;

}

return BinarySearchTree.minimumInSubtree(root.right);

}



Deletion from a BST
 to delete a node in a BST there are 3 cases to consider:

1. deleting a leaf node

2. deleting a node with one child

3. deleting a node with two children
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Deleting a Leaf Node
 deleting a leaf node is easy because the leaf has no 

children

 simply remove the node from the tree

 e.g., delete 93
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Deleting a Node with One Child
 deleting a node with one child is also easy because of 

the structure of the BST

 remove the node by replacing it with its child

 e.g., delete 83
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Deleting a Node with Two Children
 deleting a node with two children is a little trickier

 can you see how to do it?
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Deleting a Node with Two Children
 replace the node with its inorder predecessor OR 

inorder successor

 call the node to be deleted Z

 find the inorder predecessor OR the inorder successor

 call this node Y

 copy the data element of Y into the data element of Z

 delete Y

 e.g., delete 50
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