
Trees

1

Graphs
 a graph is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes

 in graph theory the links are normally called edges

 graphs occur frequently in a wide variety of real-world
problems

 social network analysis

 e.g., six-degrees-of-Kevin-Bacon, Lost Circles

 transportation networks

 e.g., http://ac.fltmaps.com/en

 many other examples

 http://www.visualcomplexity.com/vc/

2

https://lostcircles.com/
http://ac.fltmaps.com/en
http://www.visualcomplexity.com/vc/

Trees
 trees are special cases of graphs

 a tree is a data structure made up of nodes

 each node stores data

 each node has links to zero or more nodes in the next level
of the tree

 children of the node

 each node has exactly one parent node

 except for the root node

3

4

50

11 6

79

34

886723 3399

131

836

5

50

11 6

79

34

886723 3399

131

836

Trees
 the root of the tree is the node that has no parent node

 all algorithms start at the root

6

7

50

11 6

79

34

886723 3399

131

836

root

Trees
 a node without any children is called a leaf

8

9

50

11 6

79

34

886723 3399

131

836

leaf leaf leaf leaf leaf

leaf leaf

leaf

Trees
 the recursive structure of a tree means that every node

is the root of a tree

10

11

50

11 6

79

34

886723 3399

131

836

subtree

12

50

11 6

79

34

886723 3399

131

836

subtree

13

50

11 6

79

34

886723 3399

131

836

subtree

14

50

11 6

79

34

886723 3399

131

836

subtree

15

50

11 6

79

34

886723 3399

131

836

subtree

Binary Tree
 a binary tree is a tree where each node has at most two

children

 very common in computer science

 many variations

 traditionally, the children nodes are called the left
node and the right node

16

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

left right

50

27 73

8 44 83

73 93

right

50

27 73

8 44 83

74 93

left right

Binary Tree Algorithms
 the recursive structure of trees leads naturally to

recursive algorithms that operate on trees

 for example, suppose that you want to search a binary
tree for a particular element

21

22

public static <E> boolean contains(E element) {

return contains(element, this.root);

}

23

private static <E> boolean contains(E element, Node<E> node) {

if (node == null) {

return false;

}

if (element.equals(node.data)) {

return true;

}

boolean inLeftTree = contains(element, node.left);

if (inLeftTree) {

return true;

}

boolean inRightTree = contains(element, node.right);

return inRightTree;

}

examine root

examine left
subtree

examine right
subtree

is tree empty?

50

27 73

8 44 83

74 93

t.contains(93)

50

27 73

8 44 83

74 93

50 == 93?

50

27 73

8 44 83

74 93

27 == 93?

50

27 73

8 44 83

74 93
8 == 93?

50

27 73

8 44 83

74 93
44 == 93?

50

27 73

8 44 83

74 93

73 == 93?

50

27 73

8 44 83

74 93

83 == 93?

50

27 73

8 44 83

74 93

74 == 93?

50

27 73

8 44 83

74 93

93 == 93?

Iteration or Traversal
 visiting every element of the tree can also be done

recursively

 3 possibilities based on when a node is visited

1. inorder

 recursively traverse the left subtree,

 then visit the node,

 then recursively traverse the right subtree

33

50

27 73

8 44 83

74 93

inorder: 8, 27, 44, 50, 73, 74, 83, 93

Iteration or Traversal
2. preorder

 visit the node,

 then recursively traverse the left subtree,

 then recursively traverse the right subtree

35

50

27 73

8 44 83

74 93

preorder: 50, 27, 8, 44, 73, 83, 74, 93

Iteration or Traversal
 postorder

 recursively traverse the left subtree,

 then recursively traverse the right subtree,

 then visit the node

37

50

27 73

8 44 83

74 93

postorder: 8, 44, 27, 74, 93, 83, 73, 50

Iteration or Traversal
 what kind of traversal is contains?

39

Iteration or Traversal
 the previous three tree traversals are all depth-first

traversals

 called depth first because for any node you traverse the
entire left subtree before traversing the right subtree

 another possible traversal is to visit all nodes at the
same level before continuing on the next lower level

 called breadth first search

40

50

27 73

8 44 83

74 93

breadth first: 50, 27, 73, 8, 44, 83, 74, 93

Binary Search Trees

42

50

27 73

8 44 83

74 93

Binary Search Trees (BST)
 the tree from the previous slide is a special kind of

binary tree called a binary search tree

 in a binary search tree:

1. all nodes in the left subtree have data elements that are
less than the data element of the root node

2. all nodes in the right subtree have data elements that are
greater than or equal to the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

44

50

27 73

8 44 83

74 93

right subtree
(all elements >= 50)

left subtree
(all elements < 50)

51

76

Binary Search Trees (BST)
 is every node of a BST the root of a BST?

46

Implementing a BST
 what types of data elements can a BST hold?

 hint: we need to be able to perform comparisons such as
less than, greater than, and equal to with the data elements

47

48

public class BinarySearchTree<E extends Comparable<E>> {

E must implement Comparable<E>

“for every type E that can be compared to itself”

Implementing a BST: Nodes
 we need a node class that:

 has-a data element

 has-a link to the left subtree

 has-a link to the right subtree

49

50

public class BinarySearchTree<E extends Comparable<E>> {

private static class Node<E> {

private E data;

private Node<E> left;

private Node<E> right;

/**

* Create a node with the given data element. The left and right child

* nodes are set to null.

*

* @param data

* the element to store

*/

public Node(E data) {

this.data = data;

this.left = null;

this.right = null;

}

}

Implementing a BST: Fields and Ctor
 a BST has-a root node

 creating an empty BST should set the root node to null

51

52

/**

* The root node of the binary search tree.

*/

private Node<E> root;

/**

* Create an empty binary search tree.

*/

public BinarySearchTree() {

this.root = null;

}

Implementing a BST: Adding elements
 the definition for a BST tells you everything that you

need to know to add an element

 in a binary search tree:

1. all nodes in the left subtree have data elements that are
less than the data element of the root node

2. all nodes in the right subtree have data elements that are
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

53

54

/**

* Add an element to the tree. The element is inserted into the tree
in a

* position that preserves the definition of a binary search tree.

*

* @param element

* the element to add to the tree

*/

public void add(E element) {

if (this.root == null) {

this.root = new Node<E>(element);

}

else {

// call recursive static method

BinarySearchTree.add(element, null, this.root);

}

}

55

/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

*

* @param element the element to add to the subtree

* @param root the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) { // element belongs in the left subtree

if (root.left == null) { // is there no left subtree?

root.left = new Node<E>(element); // add the element as the new left child

} else {

BinarySearchTree.add(element, root.left); // recursively add to the left subtree

}

} else { // element belongs in the right subtree

if (root.right == null) { // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right); // recursively add to the right subtree

}

}

}

56

/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

*

* @param element the element to add to the subtree

* @param root the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) { // element belongs in the left subtree

if (root.left == null) { // is there no left subtree?

root.left = new Node<E>(element); // add the element as the new left child

} else {

BinarySearchTree.add(element, root.left); // recursively add to the left subtree

}

} else { // element belongs in the right subtree

if (root.right == null) { // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right); // recursively add to the right subtree

}

}

}

57

/**

* Add an element to the tree with the specified root. The element is inserted into the

* tree in a position that preserves the definition of a binary search tree.

*

* @param element the element to add to the subtree

* @param root the root of the subtree

*/

private static <E extends Comparable<E>>

void add(E element, Node<E> root) {

if (element.compareTo(root.data) < 0) { // element belongs in the left subtree

if (root.left == null) { // is there no left subtree?

root.left = new Node<E>(element); // add the element as the new left child

} else {

BinarySearchTree.add(element, root.left); // recursively add to the left subtree

}

} else { // element belongs in the right subtree

if (root.right == null) { // is there no right subtree?

root.right = new Node<E>(element); // add the element as the new right child

} else {

BinarySearchTree.add(element, root.right); // recursively add to the right subtree

}

}

}

Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child

 right subtree left-most child

58

50

27 73

8 44 83

74 93

rightmost
child

51

left subtree rightmost child = inorder predecessor 76

left subtree
(all elements < 50)

50

27 73

8 44 83

74 93

51

leftmost
child

right subtree leftmost child = inorder successor

76

right subtree
(all elements > 50)

Predecessors and Successors in a BST
 in a BST there is something special about a node's:

 left subtree right-most child = inorder predecessor

 the node containing the largest value less than the root

 right subtree left-most child = inorder successor

 the node containing the smallest value greater than the root

 it is easy to find the predecessor and successor nodes if
you can find the nodes containing the maximum and
minimum elements in a subtree

61

62

/**

* Find the node in a subtree that has the smallest data element.

*

* @param root

* the root of the subtree

* @return the node in the subtree that has the smallest data element.

*/

public static <E> Node<E> minimumInSubtree(Node<E> root) {

if (root.left == null) {

return root;

}

return BinarySearchTree.minimumInSubtree(root.left);

}

base case?

recursive case?

63

/**

* Find the node in a subtree that has the largest data element.

*

* @param root

* the root of the subtree

* @return the node in the subtree that has the largest data element.

*/

public static <E> Node<E> maximumInSubtree(Node<E> root) {

if (root.right == null) {

return root;

}

return BinarySearchTree.maximumInSubtree(root.right);

}

base case?

recursive case?

64

/**

* Find the node in a subtree that is the predecessor to the root of the

* subtree. If the predecessor node exists, then it has the

* largest data element in the left subtree of root.

*

* @param root

* the root of the subtree

* @return the node in a subtree that is the predecessor to the root of

* the subtree, or null if the root of the subtree

* has no predecessor

*/

public static <E> Node<E> predecessorInSubtree(Node<E> root) {

if (root.left == null) {

return null;

}

return BinarySearchTree.maximumInSubtree(root.left);

}

65

/**

* Find the node in a subtree that is the successor to the root of the

* subtree. If the successor node exists, then it is the node that has

* the smallest data element in the right subtree of root.

*

* @param root

* the root of the subtree

* @return the node in a subtree that is the successor to the root of

* the subtree, or null if the root of the subtree has no

* successor

*/

public static <E> Node<E> successorInSubtree(Node<E> root) {

if (root.right == null) {

return null;

}

return BinarySearchTree.minimumInSubtree(root.right);

}

Deletion from a BST
 to delete a node in a BST there are 3 cases to consider:

1. deleting a leaf node

2. deleting a node with one child

3. deleting a node with two children

66

Deleting a Leaf Node
 deleting a leaf node is easy because the leaf has no

children

 simply remove the node from the tree

 e.g., delete 93

67

50

27 73

8 44 83

74 93

51

76

delete 93

50

27 73

8 44 83

74

51

76

Deleting a Node with One Child
 deleting a node with one child is also easy because of

the structure of the BST

 remove the node by replacing it with its child

 e.g., delete 83

70

50

27 73

8 44 83

74

51

76

delete 83

50

27 73

8 44 7451

76

Deleting a Node with Two Children
 deleting a node with two children is a little trickier

 can you see how to do it?

73

Deleting a Node with Two Children
 replace the node with its inorder predecessor OR

inorder successor

 call the node to be deleted Z

 find the inorder predecessor OR the inorder successor

 call this node Y

 copy the data element of Y into the data element of Z

 delete Y

 e.g., delete 50

74

50

27 73

8 44 7451

76

delete 50 using inorder predecessor

50

27 73

8 44 7451

76

Z

Y

inorder
predecessor

to Z

44

27 73

8 44 7451

76

copy Y data to Z data

Y

inorder
predecessor

to Z

Z

44

27 73

8 44 7451

76

Z

delete Y

Y

44

27 73

8 74

76

51

50

27 73

8 44 7451

76

delete 50 using inorder successor

50

27 73

8 44 7451

76

Z

Y

inorder
successor

to Z

51

27 73

8 44 7451

76

Z

Y

inorder
successor

to Z

copy Y data to Z data

51

27 73

8 44 7451

76

Z

Y

delete Y

51

27 73

8 44 74

76

