Inheritance (cont)

Abstract Classes

Polymorphism

» inheritance allows you to define a base class that has
fields and methods

» classes derived from the base class can use the public and
protected base class fields and methods

» polymorphism allows the implementer to change the
behaviour of the derived class methods

// client code
public void print(Dog d) {
System.out.println(d.toString()); Dog toString

} CockerSpaniel toString
Mix toString

// later on...
Dog fido

new Dog();

CockerSpaniel lady = new CockerSpaniel();
Mix mutt
this.print(fido);
this.print(lady);

this.print(mutt);

new Mix();

» notice that £ido, 1lady, and mutt were declared as
Dog, CockerSpaniel, and Mutt

» what if we change the declared type of £ido, 1ady,
and mutt ?

// client code
public void print(Dog d) {
System.out.println(d.toString()); Dog toString

} CockerSpaniel toString
Mix toString

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);

this.print(lady);

this.print(mutt);

» what if we change the print method parameter type
toObject ?

// client code
public void print(Object obj) {
System.out.println(obj.toString()); Dog toString
} CockerSpaniel toString

Mix toString

// later on Date toString

Dog fido = new Dog();

Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);

this.print(lady);

this.print(mutt);

this.print(new Date());

Late Binding

» polymorphism requires late binding of the method
name to the method definition

» late binding means that the method definition is
determined at run-time

non-static method

.toString ()

run-time type of
the instance ob3j

Declared vs Run-time type

Dog lady = new CockerSpaniel();

declared run-time or actual
type type

» the declared type of an instance determines what
methods can be used

Dog lady = new CockerSpaniel();

» the name lady can only be used to call methods in Dog
» lady.someCockerSpanielMethod () won't compile

Dynamic dispatch

» the actual type of the instance determines what
definition is used when the method is called

Dog lady = new CockerSpaniel();

» lady.toString () usesthe CockerSpaniel definition
of toString

» selecting which version of a polymorphic method to
use at run-time is called dynamic dispatch

Abstract classes

12

Abstract Classes

» sometimes you will find that you want the API for a
base class to have a method that the base class cannot
define

» e.g. you might want to know what a Dog's bark sounds like
but the sound of the bark depends on the breed of the dog

» you want to add the method bark to Dog but only the subclasses
of Dog can implement bark

Abstract Classes

» sometimes you will find that you want the API for a
base class to have a method that the base class cannot
define

» e.g. you might want to know the breed of a Dog but only the
subclasses have information about the breed

» you want to add the method getBreed to Dog but only the
subclasses of Dog can implement getBreed

» if the base class has methods that only subclasses can
define and the base class has fields common to all
subclasses then the base class should be abstract

» if you have a base class that just has methods that it cannot
implement then you probably want an interface

» abstract :

» (dictionary definition) existing only in the mind

» in Java an abstract class is a class that you cannot make
instances of

» e.g. http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

» an abstract class provides a partial definition of a class

» the "partial definition” contains everything that is common
to all of the subclasses

» the subclasses complete the definition

» an abstract class can define fields and methods
» subclasses inherit these

» an abstract class can define constructors
» subclasses must call these

» an abstract class can declare abstract methods

» subclasses must define these (unless the subclass is also
abstract)

Abstract Methods

» an abstract base class can declare, but not define, zero
or more abstract methods

¥

public abstract class Dog
{

// fields, ctors, regular methods

public abstract String getBreed() ;

} * *

» the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

Abstract Methods

» the non-abstract subclasses must provide definitions
for all abstract methods
» consider getBreedin Mix

public class Mix extends Dog
{ // stuff from before...

@Override
public String getBreed() {
if(this.breeds.isEmpty()) {
return "mix of unknown breeds";
}
StringBuffer b = new StringBuffer();
b.append("mix of");
for(String breed : this.breeds) {

b.append(+ breed);

}
return b.toString();

PureBreed

» a purebreed dog is a dog with a single breed
» one String field to store the breed

» note that the breed is determined by the subclasses
» the class PureBreed cannot give the breed field a value
» but it can implement the method getBreed

» the class PureBreed defines an field common to all

subclasses and it needs the subclass to inform it of the
actual breed
» PureBreed is also an abstract class

public abstract class PureBreed extends Dog

{

private String breed;

public PureBreed(String breed) {

super();
this.breed = breed;

}

public PureBreed(String breed, int size, int energy) {
super(size, energy);
this.breed = breed;

@Override public String getBreed()
{

return this.breed;

Subclasses of PureBreed

» the subclasses of PureBreed are responsible for
setting the breed
» consider Komondor

Komondor

public class Komondor extends PureBreed
{

private final String BREED = "komondor";

public Komondor() {
super (BREED) ;

public Komondor(int size, int energy) {
super(BREED, size, energy);

// other Komondor methods...

Another example: Tetris

» played with 7 standard
blocks called tetriminoes

» blocks drop from the top

» player can move blocks
left, right, and down

» player can spin blocks
left and right

Tetriminoes

Tetriminoes

» features common to all tetriminoes
» has-a color
» has-a shape
» has-a position
» draw

» move left, right, and down

» features unique to each kind of tetrimino
» the actual shape
» spin left and right

Block * class name in italics for abstract classes

- color : Color

- position : Point2 a 2D point

- grid : BlockGrid a grid object that stores the shape

Yy Y

Block (int, Point2, Color) » protected constructor

+ draw() Block is abstract because we can't define
+ moveDown () the shape of a generic block

+ moveleft ()

+ moveRight ()

Y

IBlock
+ IBlock (Point2, Color) } * constructor defines the shape
+ spinLeft () } * methods modify the shape to produce

+ spinRight () the rotated version of the block

} 28 http://www.eecs.yorku.ca/course archive/2016-17/F/2030/1labs/1lab4/1ab4.html

http://www.eecs.yorku.ca/course_archive/2016-17/F/2030/labs/lab4/lab4.html

Inheritance (cont)

Static Features

29

Static Fields and Inheritance

» static fields behave the same as non-static fields in
inheritance
» public and protected static fields are inherited by
subclasses, and subclasses can access them directly by name

» private static fields are not inherited and cannot be
accessed directly by name

» but they can be accessed/modified using public and protected
methods

Static Fields and Inheritance

» the important thing to remember about static fields
and inheritance

» there is only one copy of the static field shared among the
declaring class and all subclasses

» consider trying to count the number of Dog objects
created by using a static counter

// the wrong way to count the number of Dogs created
public abstract class Dog {

// other fields...

static protected int numCreated = 0; protected, not private, so that
subclasses can modify it directly

Dog() {
/] ...

Dog.numCreated++;

}

public static int getNumberCreated() {
return Dog.numCreated;

}

// other contructors, methods...

// the wrong way to count the number of Dogs created
public class Mix extends Dog

{
// fields...

Mix()
{

super();
Mix.numCreated++;

}

// other contructors, methods...

// too many dogs!

public class TooManyDogs
{

public static void main(String[] args)

{

Mix mutt = new Mix();
System.out.println(Mix.getNumberCreated());

prints 2

What Went Wrong?

» there is only one copy of the static field shared among
the declaring class and all subclasses
» Dog declared the static field
» Dog increments the counter every time its constructor is

called
» Mix inherits and shares the single copy of the field
» Mix constructor correctly calls the superclass constructor

» which causes numCreated to be incremented by Dog

» Mix constructor then incorrectly increments the counter

Counting Dogs and Mixes

» suppose you want to count the number of Dog
instances and the number of Mix instances
» Mix must also declare a static field to hold the count

» somewhat confusingly, Mix can give the counter the same name
as the counter declared by Dog

public class Mix extends Dog

{
// other fields...

private static int numCreated = @; // bad style; hides Dog.numCreated

public Mix()
{

super(); // will increment Dog.numCreated
// other Mix stuff...

numCreated++; // will increment Mix.numCreated

/] ...

Hiding Fields

» note that the Mix field numCreated has the same
name as an field declared in a superclass

» whenever numCreated is used in Mix, it is the Mix
version of the field that is used

» if a subclass declares an field with the same name as a
superclass field, we say that the subclass field hides the
superclass field

» considered bad style because it can make code hard to read
and understand

» should change numCreated to numMixCreated in Mix

Static Methods and Inheritance

» there is a significant difference between calling a static

method and calling a non-static method when dealing
with inheritance

» there is no dynamic dispatch on static methods
» therefore, you cannot override a static method

public abstract class Dog {
private static int numCreated = 0;
public static int getNumCreated() {
return Dog.numCreated;

public class Mix {
private static int numMixCreated = 0;

public static int getNumCreated() { notice no @Override
return Mix.numMixCreated;

public class Komondor {
private static int numKomondorCreated = 0;
public static int getNumCreated() { notice no @Override
return Komondor.numKomondorCreated;

public class WrongCount {

public static void main(String[] args) {

Dog mutt = new Mix();

Dog shaggy = new Komondor();
System.out.println(mutt.getNumCreated());
System.out.println(shaggy.getNumCreated());
System.out.println(Mix.getNumCreated());
System.out.println(Komondor.getNumCreated());

}
}
prints 2
2
1
1

Dog version
Dog version

Mix version

Komondor
version

What's Going On?

» there is no dynamic dispatch on static methods

» because the declared type of mutt is Dog, it is the Dog
version of getNumCreated that is called

» because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

Hiding Methods

» notice that Mix.getNumCreated and
Komondor .getNumCreated work as expected

» if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method
» you cannot override a static method, you can only hide it

» hiding static methods is considered bad form because it
makes code hard to read and understand

» the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy

.. the client should not have used an instance to call a static
method

2. the implementer should not have hidden the static
method in Dog

Using superclass methods

45

Other Methods

» methods in a subclass will often need or want to call
methods in the immediate superclass

» a new method in the subclass can call any public or
protected method in the superclass without using any
special syntax

» asubclass can override a public or protected
method in the superclass by declaring a method that
has the same signature as the one in the superclass

» asubclass method that overrides a superclass method can
call the overridden superclass method using the super

keyword

Dog equals

» we will assume that two Dogs are equal if their size
and energy are the same

@Override public boolean equals(Object obj)
{

boolean eq = false;
if(obj != null & & this.getClass() == obj.getClass())

{
Dog other = (Dog) obj;
eq = this.getSize() == other.getSize() &&
this.getEnergy() == other.getEnergy();
}

return eq;

Mix equals (version 1)

» two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

@Override public boolean equals(Object obj)
{ // the hard way
boolean eq = false;
if(obj != null & this.getClass() == obj.getClass()) {
Mix other = (Mix) obj;
eq = this.getSize() == other.getSize() && ;ﬂgﬁi?;gﬁii;gf
this.getEnergy() == other.getEnergy() &%& the superclass
this.breeds.size() == other.breeds.size() &&
this.breeds.containsAll(other.breeds);

}

return eq;

M s

Mix equals (version 2)

» two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

» Dog equals already tests if two Dog instances are equal

» Mix equals can call Dog equals to test if the Dog subobjects
are equal, and then test if the breeds are equal

» also notice that Dog equals already checks that the
Object argument is not null and that the classes are
the same

» Mix equals does not have to do these checks again

@Override public boolean equals(Object obj)

{

boolean eq = false; subclass method that overrides a superclass
if (super.equals(obj)) method can call the original superclass method
{ // the Dog subobjects are equal
Mix other = (Mix) obj;
eq = this.breeds.size() == other.breeds.size() &&
this.breeds.containsAll(other.breeds);

}

return eq;

Dog toString

@Override public String toString()
{

String s = "size

+ this.getSize() +

return s;

Mix toString

@Override public String toString()

{
StringBuffer b = new StringBuffer();
b.append(super.toString()); size and energy of the dog
for(String s : this.breeds)
now breeds of the mix
b.append(+ S);

b.append(" mix");
return b.toString();

Dog hashCode

// similar to code generated by Eclipse
@Override public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + this.getEnergy();
result = prime * result + this.getSize();
return result;

use this.energy and

} this.size to compute
the hash code

Mix hashCode

// similar to code generated by Eclipse
@Override public int hashCode()
{

final int prime = 31;

int result = super.hashCode();

result = prime * result + this.breeds.hashCode();
return result;

use this.energy,
} this.size, and this.breeds
to compute the hash code

Graphical User Interfaces

notes Chap 7

55

Java Swing

» Swing is a Java toolkit for building graphical user
interfaces (GUIs)

» http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

» old version of the Java tutorial had a visual guide of
Swing components

» http://web.mit.edu/6.005/www/spi14/psets/ps4/java-6-
tutorial/components.html

http://docs.oracle.com/javase/tutorial/uiswing/TOC.html
http://web.mit.edu/6.005/www/sp14/psets/ps4/java-6-tutorial/components.html

Simple Applications

» simple applications often consist of just a single
window (containing some controls)

JFrame
window with border, title, buttons

| £:| JFrame - mg_m i

Simple Applications

» simple applications can be
implemented as a subclass
of a JFrame

» hundreds of inherited
methods but only a dozen
or so are commonly called

by the implementer (see
URL below)

Component

ZIX

Container

7

Window

2

Frame

ZIX

JFrame

user interface item

holds other components

plain window

window with title and
border

https://docs.oracle.com/javase/tutorial/uiswing/components/frame.html

Simple Applications

» a simple application made up of a:
» JFrame
» has-a JMenuBar

» has-a Container (called the content pane)
0 has-a JLabel

TopLevelDemo E| @| E|

Frame
Menu Bar

Content pane with
yellow label

Simple Applications

File

LUl

MY Loy

~ a0 2 2 lo

Creating JFrames

1. Create the frame

2. Choose what happens when the frame closes
3. Create components and put them in the frame
4. Size the frame

5. Show it

public class ImageViewer extends JFrame {

public class ImageViewer extends JFrame {

public ImageViewer () {
// 1. Create the frame

super ("Image Viewer") ;

public class ImageViewer extends JFrame {

public ImageViewer () {
// 1. Create the frame

super ("Image Viewer") ;

// 2. Choose what happens when the frame closes
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

public class ImageViewer extends JFrame implements ActionListener ({

// a unique identifier to associate with the Open command ‘

public static final String OPEN COMMAND = "Open"; to respond to the user

// a label to show the image SeleCtlng the Open
private JLabel img; command from the menu

public ImageViewer () {
// 1. Create the frame

super ("Image Viewer") ;

// 2. Choose what happens when the frame closes
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// 3. Create components and put them in the frame
this.makeMenu () ;

this.makelabel () ;

this.setLayout (new FlowLayout()) ;

N

controls how the components
re-size and re-position when the
JFrame changes size

public class ImageViewer extends JFrame implements ActionListener ({

// a unique identifier to associate with the Open command
public static final String OPEN COMMAND = "Open";

// a label to show the image
private JLabel img;

public ImageViewer () {
// 1. Create the frame

super ("Image Viewer") ;

// 2. Choose what happens when the frame closes
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// 3. Create components and put them in the frame
this.makeMenu () ;

this.makelabel () ;

this.setLayout (new FlowLayout()) ;

// 4. Size the frame
this.setMinimumSize (new Dimension (600, 400)) ;
this.pack() ;

N

sizes the JFrame so that all components
have their preferred size; uses the layout
manager to help adjust component sizes

public class ImageViewer extends JFrame implements ActionListener ({

// a unique identifier to associate with the Open command
public static final String OPEN COMMAND = "Open";

// a label to show the image
private JLabel img;

public ImageViewer () {
// 1. Create the frame

super ("Image Viewer") ;

// 2. Choose what happens when the frame closes
this.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;

// 3. Create components and put them in the frame
this.makeMenu () ;

this.makelabel () ;

this.setLayout (new FlowLayout()) ;

// 4. Size the frame
this.setMinimumSize (new Dimension (600, 400)) ;

this.pack() ;

// 5. Show it
this.setVisible (true) ;

;;@j Simple Calculator
File
Calculated Value 0 Input |
* = P — /ﬂ
label label
JLabel JLabel

p 68 http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

private void makeLabel () {
this.img = new JLabel ("") ;
this.getContentPane () .add(this.imgqg) ;

» a menu appears in a menu bar (or a popup menu)
» each item in the menu is a menu item

menu
JMenu \ | £| Simple cm:mm::?ﬂ[-:- Elﬁj
*File | < menu bar
Open File JMenuBar
Save File
menu item
JMenultem ‘

* *
JMenuBar <>— JMenu |<>— JMenuItem

+ add (JMenu) + add (JMenuItem)

» 70 http://docs.oracle.com/javase/tutorial/uiswing/components/menu.html

» to create a menu
» create a JMenuBar

» create one or more JMenu objects
» add the JMenu objects to the JMenuBar

» create one or more JMenultem objectes
» add the JMenultem objects to the J]Menu

private void makeMenu() {

JMenuBar menuBar = new JMenuBar() ;

private void makeMenu() {

JMenuBar menuBar = new JMenuBar() ;

JMenu fileMenu = new JMenu("File") ;

menuBar.add (fileMenu) ;

private void makeMenu() {

JMenuBar menuBar = new JMenuBar() ;

JMenu fileMenu = new JMenu("File") ;

menuBar.add (fileMenu) ;

JMenuItem openMenultem = new JMenultem("Open...");

openMenultem.setActionCommand (ImageViewer.OPEN COMMAND) ,
openMenultem.addActionListener (this) ;

fileMenu. add (openMenuItem) ; ‘

to respond to the user
selecting the Open
} command from the menu

private void makeMenu() {

JMenuBar menuBar = new JMenuBar() ;

JMenu fileMenu = new JMenu("File") ;

menuBar.add (fileMenu) ;

JMenuItem openMenultem = new JMenultem("Open...");
openMenultem.setActionCommand (ImageViewer.OPEN COMMAND) ;
openMenultem.addActionListener (this) ;

fileMenu. add (openMenuItem) ;

this.setJMenuBar (menuBar) ;

Event Driven Programming

» so far we have a frame with some Ul elements (menu,
menu item, label)

» now we need to implement the actions
» each Ul element is a source of events
» button pressed, slider moved, text changed, etc.

» when the user interacts with a Ul element an event is
triggered

» this causes an event object to be sent to every object
listening for that particular event

» the event object carries information about the event

» the event listeners respond to the event

Not a UML Diagram

event
listener A
- event
event 1 event object 1 listener B
source 1 J
event
listener C
1 event object 2
event event
source 2 J listener D >

Implementation

» each JMenuItem has two inherited methods from
AbstractButton

public void addActionListener (Actionlistener 1)

public void setActionCommand (String actionCommand)

» for the IMenuItem
1. call addactionListener with the listener as the argument

2. call setactionCommand with a string describing what event
has occurred

Implementation

» our application has one event thiat is fired by a button
(JMenuItem)

» a button fires an ActionEvent event whenever it is
clicked

» ImageViewer listens for fired ActionEvents

» how? by implementing the ActionListener interface

public interface ActionListener

{

void actionPerformed (ActionEvent e);

@QOverride
public void actionPerformed (ActionEvent e) {

String command = e.getActionCommand () ;

@Override

public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;

if (command.equals (ImageViewer.OPEN COMMAND)) {

N

to respond to the user
selecting the Open
command from the menu

@Override
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;
if (command.equals (ImageViewer.OPEN COMMAND)) {

JFileChooser chooser = new JFileChooser() ;

N

used to pick the file
to open

@Override

public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;
if (command.equals (ImageViewer.OPEN COMMAND)) {
JFileChooser chooser = new JFileChooser() ;

int result = chooser.showOpenDialog (this) ;

N

show the file chooser and

get the user result (ok or
cancel)

@Override
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;
if (command.equals (ImageViewer.OPEN COMMAND)) {
JFileChooser chooser = new JFileChooser() ;
int result = chooser.showOpenDialog (this) ;
if (result == JFileChooser.APPROVE OPTION) ({

N

user picked a file and
pressed ok

@Override

public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;

if (command.equals (ImageViewer.OPEN COMMAND)) {

JFileChooser chooser = new JFileChooser() ;

int result = chooser.showOpenDialog (this) ;

if (result == JFileChooser.APPROVE OPTION) ({

String fileName =

chooser.getSelectedFile () .getAbsolutePath () ;

N

get the file name and

directory path that the
user picked

@Override
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand () ;
if (command.equals (ImageViewer.OPEN COMMAND)) {
JFileChooser chooser = new JFileChooser() ;
int result = chooser.showOpenDialog (this) ;
if (result == JFileChooser.APPROVE OPTION) ({
String fileName =
chooser.getSelectedFile () .getAbsolutePath () ;

ImageIcon icon = new ImageIcon(fileName) ;

N

try to read the image

@Override
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;
if (command.equals (ImageViewer.OPEN COMMAND)) {
JFileChooser chooser = new JFileChooser() ;
int result = chooser.showOpenDialog (this) ;
if (result == JFileChooser.APPROVE OPTION) ({
String fileName =
chooser.getSelectedFile () .getAbsolutePath() ;
ImageIcon icon = new ImageIcon(fileName) ;
if (icon.getImageLoadStatus () ==
MediaTracker.COMPLETE) |

N

if the image was
} successfully read from disk

@Override
public void actionPerformed (ActionEvent e) {
String command = e.getActionCommand() ;
if (command.equals (ImageViewer.OPEN COMMAND)) {
JFileChooser chooser = new JFileChooser() ;
int result = chooser.showOpenDialog (this) ;
if (result == JFileChooser.APPROVE OPTION) ({
String fileName =
chooser.getSelectedFile () .getAbsolutePath() ;
ImageIcon icon = new ImageIcon(fileName) ;
if (icon.getImageLoadStatus () ==
MediaTracker.COMPLETE) |

this.img.setIcon(icon) ;

this.pack() ; ‘

set the label image and
re-size the frame

public static void main (String[] args) {
// make an ImageViewer instance

new ImageViewer () ;

